„ A víz élet, gondozzuk közösen! ”

VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV

BALATON RÉSZVÍZGYŰJTŐ

közreadja:
Közép-dunántúli Vízügyi Igazgatóság

2015. november
Balaton részvízgyűjtő
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV - 2015

VITAANYAG II.
A VITAANYAGOT A KORMÁNY NEM TÁRGYALTA MEG, EZÉRT NEM TÜKRÖZI A KORMÁNY ÁLLÁSPONTJÁT

Elérhetőségek:
Közép-dunántúli Vízügyi Igazgatóság (KDTVIZIG)

Cím: 1012 Budapest, Márvány utca 1/d

Honlapok:
www.kdtvizig.hu (a KDTVIZIG intézményi honlapja)

www.ovf.hu (az OVF intézményi honlapja)

www.vizeink.hu (a vízgyűjtő-gazdálkodási tervek és a tervezés honlapja)

www.euvki.hu (az EU VKI szakmai dokumentumainak és a jelentések honlapja)

Központi email cím:
vgt2@vizeink.hu
ovf@ovf.hu
Tartalom

Bevezető

1. A Balaton részvízgyűjtő jellemzése 4
 1.1 Természeti környezet .. 4
 1.1.1 Domborzat, éghajlat 4
 1.1.2 Földtan, talajtakaró 4
 1.1.3 Vízföldtan ... 6
 1.1.4 Vízrajz ... 6
 1.1.5 Az éghajlatváltozás és vízgazdálkodási következményei ... 7
 1.1.6 Élővilág ... 11
 1.2 Társadalmi és gazdasági viszonyok 11
 1.2.1 Településhálózat, népességföldrajz 12
 1.2.2 Területhasználat .. 12
 1.2.3 Gazdaságföldrajz ... 14
 1.3 A vízgyűjtő-gazdálkodási tervezés szereplői 18
 1.3.1 Hatáskörrel rendelkező hatóság 18
 1.3.2 A tervezést végző szervezetek 19
 1.3.3 Érintettek ... 19
 1.4 Víztestek jellemzése ... 20
 1.4.1 Vízfolyás víztestek 20
 1.4.2 Állóvíz víztestek ... 22
 1.4.3 Erősen módosított és mesterséges víztestek 22
 1.4.4 Felszín alatti víztestek 24

2. Védett területek ... 27
 2.1 Ivóvízkivételek védőterületei 27
 2.1.1 Felszínú ivóvízbázisok 28
 2.1.2 Felszín alatti ivóvízbázisok 29
 2.2 Tápanyag- és nitrát-érzékeny területek 33
 2.3 Természetes fürdőhelyek 36
 2.4 Természeti értékei miatt védett területek 37
 2.4.1 A halak életfeltételeinek biztosítására kijelölt felszínű vízkek ... 39

3. Emberi tevékenységből eredő terhelések és hatások 41
 3.1 Vizek fiziko-kémiai elváltozását okozó terhelések 41
 3.1.1 Pontszerű szennyezőforrások 42
 3.1.2 Diffúz szennyezőforrások 53
 3.2 Veszélyes anyag szennyezés és az emisszió leltár 56
 3.2.1 Pontszerű szennyezőforrások 57
3.3 Morfológiai beavatkozások ... 67
3.3.1 Keresztrányú műtárgyak, duzzasztások 68
3.3.2 Hosszirányú beavatkozások ... 69
3.3.3 Fenntartási tevékenységek ... 69
3.4 Vízjárást módosító beavatkozások ... 69
3.4.1 Víz visszatartása vízhasznosítási célból 73
3.4.2 Vízátvezetések .. 75
3.4.3 Vízszintszabályozás .. 75
3.4.4 Vízkivételek és bevezetések ... 77
3.5 Egyéb terhelések .. 89
3.5.1 Közlekedés .. 89
3.5.2 Rekreáció .. 90
3.5.3 Vízi turizmus .. 91
3.5.4 Horgászat ... 92
3.5.5 Medencés fürdőhelyek ... 92
4 MONITORING HÁLÓZATOK ÉS PROGRAMOK .. 94
4.1 Felszíni vizek .. 94
4.1.1 A monitoring elemei ... 94
4.1.2 Felszíni vizek monitoring programjai 95
4.2 Felszín alatti vizek ... 96
4.2.1 A monitoring elemei ... 97
4.2.2 Felszín alatti vizek monitoring programjai 97
4.3 Védett területek .. 100
5 VÍZHASZNÁLATOK GAZDASÁGI ELEMZÉSE .. 102
5.1 Víziközmű szolgáltatások költségmegtérülésének értékelése 102
5.2 Mezőgazdasági vízszolgáltatás ... 104
5.3 Saját vízkivételek .. 105
5.4 Duzzasztás energetikai célból .. 106
6 A VIZEK ÁLLAPOTÁNAK ÉRTÉKELÉSE, JELENTŐS VÍZGAZDÁLKODÁSI KÉRDESEK AZONOSÍTÁSA ... 108
6.1 Felszíni vizek állapotának bemutatása 108
6.1.1 Ökológiai és kémiai állapotértékelés 108
6.1.2 Felszíni vizek ökológiai és kémiai állapota 110
6.2 Felszín alatti víztestek állapotának minősítése 120
6.2.1 Felszín alatti víztestek mennyiségi állapotának minősítése 120
6.2.2 Felszín alatti víztestek állapotának összesített minősítése 140
6.3 Védelem alatt álló területek állapotának értékelése 141
6.3.1 Ivóvízkivételek védőterületei .. 141
6.3.2 Nitrát- és tápanyagérzékeny területek .. 145
6.3.3 Természeti fürdőhelyek ... 152
6.3.4 Természeti értékei miatt védett területek ... 154
6.3.5 A halak életfeltételeinek biztosítására kijelölt felszíni vizeink állapota 157
6.4 A víztestek állapotával kapcsolatos jelentős problémák és okai 158
6.5 A problémák és okai a kiemelt vizek tekintetében ... 168
6.5.1 Balaton ... 169
6.5.2 Zala .. 170
7 KÖRNYEZETI CÉLKITŰZÉSEK... 172
7.1 Mentességi vizsgálatok .. 172
7.2 Döntési prioritások ... 174
7.3 Környezeti célkitűzések elérésének ütemezése ... 177
8 INTÉZKEDÉSI PROGRAM... 180
8.1 VGT1 Intézkedéseinek, projektjeinek megvalósulása 180
8.2 Intézkedések Programja, 2015-2027 .. 185
8.3 A VGT2 tervezett intézkedései ... 194
 8.3.1 Intézkedési adatlapok, jó gyakorlatok, K+F feladatok 194
 8.3.2 Felszíni vizek fizikó-kémiai állapotát javító intézkedések 197
 8.3.3 Veszélyes anyagokkal kapcsolatos intézkedések 217
 8.3.4 Hidromorfológiai intézkedések ... 220
 8.3.5 Felszín alatti vizek terhelésének csökkentésére szolgáló intézkedések 222
 8.3.6 Ivóvízellátás biztonsága ... 223
 8.3.7 A természeti értékei miatt védett területek jó ökológiai állapotának elérése érdekében tervezett intézkedések .. 224
 8.3.8 A fürdésre kijelölt vizekre vonatkozó intézkedések 225
8.4 Az éghajlatváltozás hatásainak kezelése ... 226
 8.4.1 Az IPCC 5. jelentése, 2014 .. 226
 8.4.2 EU Blueprint, Az európai vízkészletek megőrzésére irányuló stratégiai terv, 2012 ... 226
 8.4.3 Az éghajlatváltozás hatásaival foglalkozó hazai stratégiák 227
 8.4.4 Az éghajlatváltozás hatásainak kezelése a VGT-ben 229
8.5 Az árvizi kockázat kezelési terv és a VGT kapcsolata 230
8.6 Rendelkezésre álló források 2014-2020 ... 236
 8.6.1 A Balaton Területfejlesztési Stratégiai Program keretében rendelkezésre álló források ... 236
 8.6.2 A Vidékfejlesztési Program támogatási rendszere 237
 8.6.3 Magyar Halászati Operatív Program támogatási rendszere 237
 8.6.4 KEHOP támogatási rendszere ... 237
 8.6.5 A TOP támogatási rendszere ... 240
 8.6.6 Javaslatak a VGT intézkedések finanszírozására 242
9 KAPCSOLÓDÓ PROGRAMOK ÉS TERVEK .. 243
9.1 Megyei stratégiai dokumentumok és programok ... 243
 9.1.1 Balaton Kiemelt Térség Fejlesztési Programja ... 244
 9.1.2 Somogy Megye Területfejlesztési Programja .. 247
 9.1.3 Vas Megye Gazdaságfejlesztési Főkuszú Területfejlesztési Programja 249
 9.1.4 Veszprémi Megye Területfejlesztési Programja .. 250
 9.1.5 Zala Megye Területfejlesztési Programja ... 251

9.2 Széchenyi 2020 .. 254
 9.2.1 Környezeti és Energhatékonysági Operatív Program (KEHOP) 254
 9.2.2 Terület- és Településfejlesztési Operatív Program (TOP) 255

10 A KÖZVÉLEMÉNY TÁJÉKOZTATÁSA .. 258
 10.1 A tájékoztatás folyamata .. 258
 10.2 Társadalmi véleményezési határidők és feladatok ... 259
 10.3 A társadalom bevonásának hatása a terv tartalmára ... 264
 10.4 A Vízgazdálkodási Tanácsok szerepe és feladatai a VGT véleményezési folyamatban 264

Ábrák

1. ábra: Az európai és afrikai közletlemez elhelyezkedése Magyarország területén................ 5
2. ábra: Jellemző felszín közel blokkfelajánlás a Balaton részvízgyűjtő területén 5
3. ábra: Jellemző talajtípusok a részvízgyűjtők területén ... 6
4. ábra: Az évi középhőmérséklet területi átlaga a Balaton részvízgyűjtő területén 1951-2014 7
5. ábra: Az évi csapadékköszeg területi átlaga a Balaton részvízgyűjtő területén 1951-2014 8
6. ábra: Az évi csapakészlet és tényleges párolgás különböző időszakok területi átlaga a Balaton részvízgyűjtő területén 1951-2014 között .. 9
8. ábra: Területhasználat megoszlása 2012-ben .. 12
9. ábra: Vízgyűjtő területi minősítése biológiai aktivitásértékük alapján 14
10. ábra: Vezetékes vízzel- illetve közcsatornával ellátott lakások száma a Balaton részvízgyűjtőn (2010-2013) ... 16
11. ábra: A víztest kategóriák összehasonlítása az első és a második VGT ciklusban 24
12. ábra: A vízbázisos megoszlása a vízkészlet szerint a Balaton-részvízgyűjtőn 30
13. ábra: A vízbázisok vízkészlet típusa és kapacitása a Balaton-részvízgyűjtőn 30
14. ábra: Települési szennyvíztisztítók kibocsátásának vízminőségi hatásai a Balaton részvízgyűjtőn ... 46
15. ábra: A Balaton közvetlen vízgyűjtő szennyvízrendszer .. 46
16. ábra: 2012. évi étkezési haltermelés faji megoszlása ... 52
17. ábra: Összes nitrogén termelési megoszlása utóvonalanként a Balaton részvízgyűjtőn 54
18. ábra: Összes foszforsor teljesítési útvonalankénti megoszlása a teljes terhelés százalékában a Balaton részvízgyűjtőn ... 55
19. ábra: Talajveszteség (természetes erőzés és mezőgazdasági terület erőzódója miatt) térrék a Balaton részvízgyűjtőn - diffúz foszforerhelés okozója 55
3-7. ábra: Műtárgyval rendelkező, illetve műtárgyval nem rendelkező víztestek száma a részvízgyűjtő alegységein 68
3-8. ábra: Keresztrügyűjtő műtárgyak száma a részvízgyűjtő alegységein .. 69
3-9. ábra: Jelentős emberi beavatkozások száma a vízfolyásokon .. 71
3-10. ábra: Felszíni vízkivételek megoszlása használat szerint (2013. évi mennyiségek alapján) 79
3-11. ábra: Felszíni vízbevezetések megoszlása használat szerint (2013. évi mennyiségek alapján) 81
3-12. ábra: Felszín alatti vízkivételek a víztest típusok szerint .. 84
3-13. ábra: Felszín alatti vízkivételek a víztest típusok és használat szerint (2008-2013) 85
3-14. ábra: Felszín alatti vízkivételek a használat célja szerint 2008-2013 között .. 85
4-1. ábra: Vízszintmérés szondával – egy mechanikus és egy digitális mérőeszköz ... 98
4-2. ábra: Merített mintavétel forrásból vízminőség vizsgálathoz .. 99
4-3. ábra: Mintavétel figyelőkútóból vízminőség vizsgálatohoz .. 99
4-4. ábra: Vízminőségi online közegészségügyi információs portál .. 101
6-1. ábra: A felszíni vízekre vonatkozó minősítési rendszer semajá .. 109
6-2. ábra: A felszíni víztestek ökológiai állapota a víztestek száma szerinti megoszlásban 112
6-3. ábra: A felszíni víztestek biológiai minősítésének a víztestek száma szerinti megoszlása élőlény-csoportonként 114
6-4. ábra: Vízfolyások és állóvizek számának megoszlása a fizikai-kémiai minősítésre kapott osztályba sorolás szerint .. 117
6-5. ábra: Vízfolyások hidromorfológiai elemek szerinti minősítése .. 119
6-6. ábra: Felszín alatti víztestek mennyiségi állapotának minősítése .. 123
6-7. ábra: A vízszintváltozás trendje 2008-2013 között a sekély porózus víztestekben 124
6-8. ábra: Karsztvízszint idősorok a Bakony nyugati előterében (k.4.1. víztest) és a Hévizi-tó hozamváltozása 126
6-9. ábra: Karsztvízszint idősorok a DNy-i Bakony (k.4.1. víztest) területén és Tapolca Malom-tó forrás vízhazam változása .. 126
6-10. ábra: A Balaton részvízgyűjtő felszín alatti víztől függő élőhelyeken .. 128
6-11. ábra: A felszín alatti víztestek kémiai állapota a Balaton részvízgyűjtőn .. 134
6-12. ábra: A Balaton részvízgyűjtőn végzett peszticid hatóanyagcsoport vizsgálatok aránya 135
6-13. ábra: Részvízgyűjtőkön mért növényvédőszer átlagok .. 137
6-14. ábra: A felszín alatti víztestek összesített állapota a Balaton részvízgyűjtőn ... 140
6-15. ábra: A felszín alatti sérülékeny ivóvízbázisok veszélyeztetettsége a Balaton részvízgyűjtőn 145
6-17. ábra: A Batyki láprétek rekonstrukciója ... 155
7-1. ábra: Felszíni víztestekre vonatkozó ökológiai célkitűzések megvalósulása .. 179
8-1. ábra: Intézkedések tervezésének módosztanak a VGT2-ben ... 186
8-2. ábra: Vízminőségi modell elvégezett terhelés hatás elemzés eredménye: jelentős szennyvízbevetések és a szennyvízbevezetések hatása miatt jelentősen terhelt víztestek ... 200
8-3. ábra: Jelentős diffúz terhelést okozó vízgyűjtők, jelentős forrásterületek, erózió miatt érzékeny vízgyűjtők és felszín alatti vízből származó terhelés miatt kockázatos víztestek vízgyűjtői ... 209

Táblázatok

1-1. táblázat: Az erdők fafaj és védettség szerinti megoszlása a Balaton részvízgyűjtőn 11
1-2. táblázat: Területhasználatok megoszlása és változása a Balaton részvízgyűjtőn .. 13
1-3. táblázat: Gazdasági mutatók 2004 évben a Balaton részvízgyűjtőn .. 14
1-4. táblázat: Az alegységi tervek készítéséért felelős vízügyi igazgatóságok .. 19
1-5. táblázat: A vízfolyások biológiai adatokkal igazolt típusai ... 21
1-6. táblázat: Az állóvizek biológiai adatokkal igazolt típusai a Balaton részvízgyűjtőn................................. 22
1-7. táblázat: Felszín alatti víztestek a Balaton részvízgyűjtőn.. 26
2-1. táblázat: KEOP források felhasználása a vízbázisok biztonságába helyezésére a Balaton-részvízgyűjtőn 31
2-2. táblázat: Az ásvány és gyógyszer védendő vizekről szerint a Balaton-részvízgyűjtőn 32
2-3. táblázat: Az ásvány és gyógyszerok felhasználása szerint a Balaton-részvízgyűjtőn................................. 33
2-4. táblázat: Nitrát-értékeny területek jellemzői a Balaton-részvízgyűjtőn .. 35
2-5. táblázat: Vízfolyás vízfolyamok járőr és természeti értékei miatt védett területtel való érintettsége a Balaton-részvízgyűjtőn ... 38
2-6. táblázat: Állóvíz vízmennyiségek és a Balaton-részvízgyűjtőn .. 39
2-7. táblázat: Felszín alatti víztestek természeti értékei miatt védett területtel való érintettsége a Balaton-részvízgyűjtőn9
2-8. táblázat: Halálomány szempontjából védett vizek és az érintett víztestek a Balaton-részvízgyűjtőn 40
3-1. táblázat: Felszíni vizek közvetlen, kommunális szennyvízbetétekéből származó átlagos szennyezőanyag terhelése a Balaton-részvízgyűjtőn (2010-2012) ... 44
3-2. táblázat: Felszíni vizek közvetlen, kommunális szennyvízbetétekéből származó szennyezőanyag terhelésének változása 2007 és 2012 között a Balaton részvízgyűjtőn .. 45
3-3. táblázat: A befogadóra gyakorolt hatás szempontjából jelentős terhelést okozó TESZIR-ben nyilvántartott kommunális települési szennyvíztisztítók száma .. 46
3-4. táblázat: Jelentős ipari üzemek száma tevékenységének, a Balaton részvízgyűjtőn ... 48
3-5. táblázat: Felszíni vizek közvetlen, ipari szennyvíz terhelése ágazatoknak a Balaton részvízgyűjtőn (2010-2012) ... 49
3-6. táblázat: Felszíni vizek közvetlen, ipari szennyvízbetétekéből származó szennyezőanyag terhelésének változása 2007 és 2010-2012 között a Balaton részvízgyűjtőn .. 49
3-7. táblázat: Nehézfém kibocsátás 2010-2012 között a Balaton részvízgyűjtőn ... 57
3-8. táblázat: Veszélyes anyagokat érintő tevékenységek, országosan és a Balaton részvízgyűjtőn ... 58
3-9. táblázat: Vízminőségi káresemények típusa és száma .. 59
3-10. táblázat: Városi csapadékvíz jellemző szennyezőnyagai és forrásai .. 64
3-11. táblázat: A morfológiai viszonyokat és a vízjárást jelentősen befolyásoló emberi beavatkozások természeti vízfolyások és állóvizek esetén ... 71
3-12. táblázat: Felszíni ivóvízkivétel miatt védett víztestek .. 79
3-14. táblázat: Felszín alatti víz közvetlen vízkivétel vízhasználatok szerinti megoszlása (2008-2013. évi átlag, ezer m3/év) ... 83
4-1. táblázat: A biológiai támogató fizikai-kémiai elemek .. 95
6-1. táblázat: A felszíni víztestek ökológiai minősítésének eredményei minőségi elemenként és összesítve, a víztestek darabszáma szerint .. 113
6-2. táblázat: A felszíni víztestek ökológiai minősítésének eredményei a különböző kategóriákban 113
6-3. táblázat: A támogató fizikai és kémiai jellemzők szerint végzett vízminősítés eredménye elem csoportoként vízfolyásokra és állóvizekre 117
6-4. táblázat: A felszín alatti víztestek mennyiségi állapotát meghatározó vizsgálatok a Balaton részvízgyűjtőn 122
6.5. táblázat: Felszín alatti víztestek mennyiségi állapotának minősítése tesztenként és víztest típusonként a Balaton részvízgyűjtőn .. 122
6.6. táblázat: A karstvízvízint emelkedésének mértéke a 2003-2014 közötti időszakban .. 125
6.7. táblázat: A források hozama.. 129
6.8. táblázat: Gyenge mennyiségi állapotú víztestek a felszín alatti víztől függő jelentős ökoszisztémák állapota alapján 131
6.9. táblázat: A felszín alatti víztestek kémiai állapotát meghatározó vizsgálatok a Balaton részvízgyűjtőn 133
6.10. táblázat: Felszín alatti víztestek kémiai állapotának minősítése tesztenként és víztest típusonként a Balaton részvízgyűjtőn .. 133
6.11. táblázat: Diffúz eredetű szennyezések vizsgálata tesz alapján gyenge állapotú víztest .. 135
6.12. táblázat: Triazin koncentrációk víztestenként.. 136
6.13. táblázat: Részvízgyűjtőkön mért növényvédőszer átlagok .. 136
6.14. táblázat: Termelőkutak és védődemon belüli megfigyelőkutak szennyezettsége miatt gyenge állapotú víztestek 138
6.15. táblázat: A felszín alatti víztől terhelt felszíni vízfolyások és gyenge állapotú felszín alatti víztestek 138
6.16. táblázat: Trend szerint kockázatos és gyenge összesített minősítésű víztestek a 2000-2012 időszakban 139
6.17. táblázat: Ivóvízbázisok minősége (Az állapotértékelés a 2009-2012 évi mérési adatok alapján készült) 142
6.18. táblázat: Tofitási mutatók változása az előző és a jelenlegi megfigyelési időszak között .. 146
6.19. táblázat: Trofitás trend állóvízeken és folyóvízeken az előző és a jelenlegi megfigyelési időszak között a mintavételi helyek százzalakában .. 146
6.20. táblázat: Felszín alatti vizek átlagos nitrat koncentrációinak (mgNO3/l) megoszlása 2008-2011 közötti időszakban .. 149
6.22. táblázat: Fürdőhelyek minősége (az állapotértékelés a 2010-2014 évi jelentések alapján készült) 153
6.23. táblázat: Természetes fürdőhely kijelölése által érintett víztesteken a fürdőhelyek jellemző minősítése 2010- 2014 időszakban .. 153
6.24. táblázat: Az egyes védett területtípusokkal érintett víztestek ... 156
6.25. táblázat: Az egyes víztesttípusokkal érintett védett területek ... 157
6.26. táblázat: Halas vízként kijelölt felszíni vizek minősége (az állapotértékelés a 2009-2012 évi mérési adatok alapján készült) .. 158
6.27. táblázat: Jelentős vízgazdálkodási problémák .. 160
7.1. táblázat: A jó állapotot elért felszín alatti víztestek aránya időszakonként, a minősítés típusa szerint 178
7.2. táblázat: A jó ökológiai állapotot/potenciált elért felszíni víztestek száma időszakonként, a víztestek típusa szerint 179
8.1. táblázat: Célok, intézkedések projekt száma intézkedés típusonként 2012-ig a Balaton részvízgyűjtőn, db 181
8.2. táblázat: Az operatív programok VKI célokat szolgáló intézkedéseinek pénzügyi jellemzői 2007-2015 a Balaton részvízgyűjtőn** .. 183
8.3. táblázat: Definiált terhelés típusok .. 187
8.4. táblázat: Intézkedési csomagok (KTM) ... 191
8.5. táblázat: Kommunális szennyvízvízbeviteltő telepek elváratlan elfolyó vízminőségi követelményei: alap – elvárható érték (technológiai határérték), BAT: az elérhető legkisebb érték adott teleméret tartományban, mely a befogadó vízminőség védelmében előírható .. 204
8.6. táblázat: Felszíni vizek közvetlen, kommunális szennyvízbevitelésből származó szennyezőanyag terhelés változása a 2010-12 évi alapállapot és a 2021-re tervezett állapot között .. 205
8-7. táblázat: Diffúz terhelésre ható intézkedések alkalmazási célterületének meghatározásához figyelembe vett kritériumok és a kijelölt célterületek (potenciális alkalmazási területek) nagysága .. 212
8-8. táblázat: ÁKK és VGT intézkedések kapcsolata .. 232
8-9. táblázat: Balatoni vízminőségi és biztonsági fejlesztések a KEHOP forrásasiból ... 236
8-10. táblázat: KEHOP VKI-hoz, illetve vízgazdálkodáshoz kapcsolódó tervezett támogatásai 2014-2020 között 238
8-11. táblázat: A megyei önkormányzatok és a megyei jogú városok tervezési jogkörében készülő fejlesztési programok forrásainak indikatív összege a Balaton részvízgyűjtőn (310,1 Ft/Euró árfolyamon számítva)240
8-12. táblázat: Balaton részvízgyűjtőre jutó megyei szintű fejlesztési TOP források intézkedésenként, Mrd Ft........ 240
9-1. táblázat: A megyék területének a Balaton részvízgyűjtőhöz tartozó aránya ... 243
9-2. táblázat: A Balatoni Régióra vonatkozó megyei fejlesztési elképzelések kapcsolata a BFT stratégiai céljaival..... 246
9-3. táblázat: A megyék indikátor vállalása a VKI szempontjából lényeges intézkedésenként a Balaton részvízgyűjtőn256
10-1. táblázat: Fórumok áttekintése .. 262

TÉRKÉPEK JEGYZÉKE (szövegben)

1. térkép: Magyarország részvízgyűjtő területei ... 19
MELLÉKLETEK JEGYZÉKE

1-1	Felszíni víztestek
1-2	Felszíni víztest típusok referencia jellemzői
1-3	Erősen módosított víztestek terhelései
1-4	Felszín alatti víztestek
1-5	Felszín alatti víztestek háttértékei és küszöbertékei
2-1	Vízbázisok
2-2	Nitrát- és tápanyagérzékeny területek
2-3	Természetes fürdőhelyek
2-4	Természetvédelmi oltalom alatt álló területek
3-1	Szennyvízterhelés jellemzői: Kommunális és ipari szennyvízkibocsátások adatai
3-2	Települési Szennyvízelvezetési Információs Rendszer
3-3	PRTR köteles telephelyek és tevékenységei (2010-2012)
3-4	Vizek tápanyag terhelése
3-5	Vasútkereskedelmi nyomások
3-6	Felszín alatti víztestek háttértékei és küszöbertékei
4-1	Átnézeti térkép
4-2	Felszíni víztestek állapota
4-3	Felszíni víztestek biológiai állapotértékelése
4-4	Felszíni víztestek fizikai és kémiai állapotértékelése
4-5	Felszíni víztestek hidromorfológiai állapotértékelése
4-6	Vízkivételek a felszín alatti víztestekben
4-7	Vízbázisok veszélyeztetettsége
4-8	Felszín alatti víztestek kémiai állapotának minősítése
4-9	Felszín alatti víztestek kémiai állapotának minősítése
5-1	Célkitűzések és mentességek
5-2	Programok, tevékenységek
5-3	Jelentős Vízgazdálkodási Problémákra érkezett írásbeli vélemények és szakértői válaszok
5-4	Vízgyűjtő-gazdálkodási tervre érkezett írásbeli vélemények és szakértői válaszok
5-5	Fórumokon elhangzott észrevételek, kérdések és szakértői válaszok
5-6	Vízgyűjtő-gazdálkodási Tanácsok ülései

TÉRKÉPEK JEGYZÉKE

1-1	Átnézeti térkép
1-2	Területhasználat
1-3	Vízfolyás víztestek kategóriái
1-4	Vízfolyás víztestek típusai
Vízgyűjtő-gazdálkodási Terv - 2015
Balaton részvízgyűjtő

1.5. Állóvíz víztestek kategóriái
1-6. Állóvíz víztestek típusai
1-7. Felszín alatti víztestek sekély porózus és sekély hegyvidéki
1-8. Felszín alatti víztestek porózus és hegyvidéki
1-9. Felszín alatti víztestek porózus termál
1-10. Felszín alatti víztestek karszt és termálkarszt
2-1. Ívóvízkivételek védőterületei
2-2. Tápanyag- és nitrátrészekeny területek
2-3. Természetes fürdőhelyek és fürdővizek
2-4. Védett természeti területek
2-5. Natura2000 és egyéb védett területek
3-1. Kommunális és ipari szennyvíz-bevezetések
3-2. Mezőgazdasági pontszerű szennyezések
3-3. E-PRTR és Seveso üzemek
3-4. Szennyezett területek és káresemények
3-5. Diffüz foszfortermelés
3-6. Diffüz nitrátrészek
3-7. Völgyzárógátak, fenékküszöbök, tározók, töltések
3-8. hidromorfológiai befolyás
3-9. Hidromorfológiai befolyásoltság – hidrológia
3-10. Vízkivételek felszín alatti vizekből
3-11. Vízkivételek felszín alatti vizekből sekély porózus és sekély hegyvidéki
3-12. Vízkivételek felszín alatti vizekből porózus és hegyvidéki
3-13. Vízkivételek felszín alatti vizekből porózus termál
3-14. Vízkivételek felszín alatti vizekből karszt és termálkarszt
3-15. Közlekedés
3-16. Hulladékgazdálkodás
4-1. Felszín alatti víztestek ökológiai minősítése
4-2. Felszín alatti víztestek osztályozása biológiai elemek
4-3. Felszín alatti víztestek osztályozása fizikai-kémiai elemek
4-4. Felszín alatti víztestek osztályozása hidromorfológiai elemek
4-5. Felszín alatti víztestek kémiai minősítése
4-6. Vízkivételek felszín alatti vizekből sekély porózus és sekély hegyvidéki
4-7. Vízkivételek felszín alatti vizekből porózus és hegyvidéki
4-8. Vízkivételek felszín alatti vizekből porózus termál
4-9. Vízkivételek felszín alatti vizekből karszt és termálkarszt
4-10. Vízkivételek felszín alatti vizekből karszt és termálkarszt
4-11. Vízkivételek felszín alatti vizekből karszt és termálkarszt

Rövidítések jegyzéke

AAS Atomabszorpciós spektrometria
AGN A Nemzetközi jelentőségű vízi utakról szóló európai megállapodás
AGROTOPO Agrotopográfiai Adatbázis
AIR Agrár Információs Rendszer
AKG agrár-könyzetszegvárdaládás
AKI Agrárgazdasági Kutató Intézet
ÁKK Árvízi Kockázatkezelés
ÁMÖ Általános Mezőgazdasági Összeírás
ÁMTSZ Állami Népegészségügyi és Tisztiorvosi Szolgálat
AOX Adsorbedható szerves halogénevgyületek
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>analitikai egység (analytical unit)</td>
</tr>
<tr>
<td>BAT</td>
<td>legjobb elérhető technológia (Best Available Techniques)</td>
</tr>
<tr>
<td>BKSZT</td>
<td>Budapesti Központi Szennyvíztisztító Telep</td>
</tr>
<tr>
<td>BM</td>
<td>Belügyminisztérium</td>
</tr>
<tr>
<td>BMP</td>
<td>Bejárható Magyarország Program</td>
</tr>
<tr>
<td>BOI</td>
<td>Biológiai Oxigénigény</td>
</tr>
<tr>
<td>BTEX</td>
<td>illékyony monoaromás szénhidrogének összefoglaló rövidítése (Benzol, Toluol, Etil-benzol, Xilol)</td>
</tr>
<tr>
<td>CEN</td>
<td>nemzetközi szabvány típus</td>
</tr>
<tr>
<td>CIS</td>
<td>Egyéshűség megvalósítás stratégia (Common Implementation Strategy)</td>
</tr>
<tr>
<td>CMEF</td>
<td>Vidékfejlesztési Programok értékelési keretrendszer (Common Monitoring and Evaluation Framework)</td>
</tr>
<tr>
<td>CNRM</td>
<td>Francia Meteorológiai. Szolgálat</td>
</tr>
<tr>
<td>CORINE</td>
<td>Európa környezeti információs rendszere (Community-wide Coordination of Information on the Environment)</td>
</tr>
<tr>
<td>DDT</td>
<td>diklor-difenil-triklóretán</td>
</tr>
<tr>
<td>DPSIR</td>
<td>Driving forces, Pressures, States, Impacts, Responses</td>
</tr>
<tr>
<td>DRBMP</td>
<td>Duna Vízgyűjtő-gazdálkodási Terv (Danube River Basin Management Plan)</td>
</tr>
<tr>
<td>ECOSTAT</td>
<td>Kormányzati Hatásvizsgálati Központ</td>
</tr>
<tr>
<td>EEA</td>
<td>Európai Környezetvédelmi Ügynökség (European Environment Agency)</td>
</tr>
<tr>
<td>EFOP</td>
<td>Emberi Erőforrás Fejlesztési Operatív Program</td>
</tr>
<tr>
<td>EGK</td>
<td>Európai Gazdasági Közösség</td>
</tr>
<tr>
<td>EGT</td>
<td>Európai Gazdasági Térség</td>
</tr>
<tr>
<td>EIONET</td>
<td>Európai Környezeti Információs és Megfigyelő Hálózat</td>
</tr>
<tr>
<td>EKHE</td>
<td>egységes környezethasználati engedély</td>
</tr>
<tr>
<td>EMEP</td>
<td>Európai Monitoring és Értékelési Program (European Monitoring and Evaluation Programme)</td>
</tr>
<tr>
<td>EMVA</td>
<td>Európai Mezőgazdasági és Vidékfejlesztési Alap</td>
</tr>
<tr>
<td>ENSZ EGB</td>
<td>Egyesült Nemzetek Szervezetének Európai Gazdasági Bizottsága</td>
</tr>
<tr>
<td>EPER</td>
<td>Európai Szennyező Anyagok Kibocsátási Regisztere (European Pollutant Emission Register)</td>
</tr>
<tr>
<td>E-PRTR</td>
<td>Európai Szennyezőanyag-kibocsátási és -szállítási Nyilvántartás</td>
</tr>
<tr>
<td>EQR</td>
<td>környezetminőségi arány (Environmental Quality Ratio)</td>
</tr>
<tr>
<td>Eqs</td>
<td>környezetminőségi határérték (Environmental Quality Standards)</td>
</tr>
<tr>
<td>ESPO</td>
<td>Európai Tervezési Megfigyelő Hálózat (European Observation Network for Territorial Development and Cohesion)</td>
</tr>
<tr>
<td>ETE</td>
<td>európai területi együttműködés</td>
</tr>
<tr>
<td>EU</td>
<td>Európai Unió</td>
</tr>
<tr>
<td>EUME</td>
<td>Európai Mértékegység: a gazdaság ökonómiai mérete az üzem potenciális jövedelemtermelő kapacitása alapján</td>
</tr>
<tr>
<td>EURATOM</td>
<td>Európai Atomenergia Közösség</td>
</tr>
<tr>
<td>EüM</td>
<td>Egészségügyi Minisztérium</td>
</tr>
<tr>
<td>FAV</td>
<td>felszín alatti vizek</td>
</tr>
<tr>
<td>FAVI</td>
<td>felszín Alatti Víz és a Földtani Közeg Nyilvántartási Rendszere</td>
</tr>
<tr>
<td>FAVÖKO</td>
<td>felszín alatti víztől függő ökoszisztéma</td>
</tr>
<tr>
<td>FEVI</td>
<td>országos felszíni vízminőségi adatbázis</td>
</tr>
<tr>
<td>FM</td>
<td>Földművelésügyi Minisztérium</td>
</tr>
<tr>
<td>FÖMI</td>
<td>Földmérései és Távérzékelési Intézet</td>
</tr>
<tr>
<td>FVM</td>
<td>Földművelésügyi és Vidékfejlesztési Minisztérium</td>
</tr>
<tr>
<td>GD</td>
<td>Ulmutató dokumentum (Guidance Document)</td>
</tr>
<tr>
<td>GDP</td>
<td>bruttó hazai termék</td>
</tr>
<tr>
<td>GNP</td>
<td>Gazdaságfejlesztési és Innovatív Operatív Program</td>
</tr>
<tr>
<td>GIS</td>
<td>Térinformatikai rendszer (Geographical Information System)</td>
</tr>
<tr>
<td>GOP</td>
<td>Gazdaságfejlesztési Operatív Program</td>
</tr>
<tr>
<td>GWP</td>
<td>Föld Felmelegítési Képesség (Global Warming Potential)</td>
</tr>
<tr>
<td>HCH</td>
<td>lindán (hexachlorciclohexan)</td>
</tr>
<tr>
<td>HIR</td>
<td>Hulladékgazdálkodási Információs Rendszer</td>
</tr>
<tr>
<td>HKI</td>
<td>Hulladék Keretirányelv</td>
</tr>
<tr>
<td>HM</td>
<td>Honvédelmi Minisztérium</td>
</tr>
<tr>
<td>HMGy</td>
<td>Helyes Mezőgazdasági Gyakorlat</td>
</tr>
<tr>
<td>HMKÁ</td>
<td>Helyes Mezőgazdasági és Környezeti Állapot</td>
</tr>
<tr>
<td>HMMI</td>
<td>Multimetrikus Makrozoobenton index család</td>
</tr>
<tr>
<td>HMMI_m</td>
<td>Multimetrikus Makrozoobenton hegyi típus</td>
</tr>
<tr>
<td>HMMI_sl</td>
<td>Multimetrikus Makrozoobenton síkvízdetéki kis és közepes vízfolyás típus</td>
</tr>
<tr>
<td>HOP</td>
<td>Halászati Operatív Program</td>
</tr>
</tbody>
</table>
VITUKI Vízgazdálkodási Tudományos Kutató Intézet
VIZIG Vízügyi Igazgatóság
VIZIR Vízgazdálkodási Információs Rendszer
VKI „Víz Keretirányelv” (2000/60/EK irányelv)
VKJ Vízkészletjárulék
VKKI Vízügyi és Környezetvédelmi Központi Igazgatóság
VKSKTB Vízgazdálkodási Keretirányelv Stratégiai Koordinációs Tárcaközi Bizottságot
VM Vízkezelési Minisztérium
VOC illékony organikus vegyületek (volatile organic compounds)
VOCI klórozott alifás szénhidrogének
VP Vidékelesztési Program
VTD vízterhelési díj
VTT Vásárhelyi Terv Továbbfejlesztése
Bevezető

A vizek, különösen az édesvizek léte, állapota és használata életünk egyik legfontosabb tényezője. Miután a víz nem korlátozottan áll rendelkezésünkre, ezért ahhoz, hogy a jövőben is mindenkinek jusson tiszta ivóvíz, és a folyók, tavak tájaink, életünk meghatározó elemei maradhassanak, erőfeszítéseket kell tennünk a felszíni és a felszín alatti vizek megóvásáért, állapotuk javításáért. A víz használata költségekkel is jár. A folyók, patakok, tavak vize, valamint a felszín alatti víz nemcsak természeti, hanem társadalmi, gazdasági értékeket is hordoz, jövedelemszerzési és költségmegtakarítási lehetőségeket kínál.

Ez a felismerés vezetett az Európai Unió új vízpolitikájának, a „Víz Keretirányelvnek” (2000/60/EK irányelve, továbbiakban VKI) kidolgozásához, mely 2000. december 22-én lépett hatályba az EU tagországaiban. Az Európai Unióhoz való csatlakozásunk óta Magyarországra nézve is kötelező az ebben előírt feladatok végrehajtása, ugyanakkor Magyarország - elhelyezkedése miatt – alapvetően érdekel abban, hogy a Duna nemzetközi vízgyűjtőkerületben mielőbb teljesüljenek a VKI célkitűzései.

A Víz Keretirányelv célja, hogy 2015-re a felszíni és felszín alatti víztestek „jó állapotba”1 kerüljenek. A keretirányelv szerint a „jó állapot” nemcsak a víz tisztaságát jelenti, hanem a vízhez kötődő élőhelyek minél zavartalanabb állapotát, illetve a megfelelő vízmennyiséget is. Amennyiben a természeti vagy a gazdasági lehetőségek nem teszik lehetővé a jó állapot megvalósítását 2015-ig, úgy a teljesítmény határidejét ütemezni lehet a VKI által felkínált mentességek megalapozott indoklásával 2021-re, illetve 2027-re. Ezek az időpontok képezik egyben a vízgyűjtő-gazdálkodási tervezés második és harmadik ciklusát. Az első végrehajtási időszak 2015. december 22-vel zárul le, ugyanakkor kezdődik el a jelenlegi második tervezés, vagy első felülvizsgálat által meghatározott intézkedési program végrehajtása.

A Víz Keretirányelv általános célkitűzései a következők:

- a vizekkel kapcsolatban lévő élőhelyek védelme, állapotuk javítása,
- a fenntartható vízhasználat elősegítése a hasznosítható vízkészletek hosszú távú védelmével,
- a vízminőség javítása a szennyezőanyagok kibocsátásának csökkentésével,
- a felszín alatti vizek szennyezésének fokozatos csökkentése, és további szennyezésük megakadályozása,
- az árvizeknek és asszályoknak a víznek állapotára gyakorolt kedvezőtlen hatásainak mérséklése.

A VKI alapelve, hogy a víz nem csupán szokásos kereskedelmi termék, hanem alapvetően örökség is, amit ennek megfelelően kell óvni, védeni. A vízkészletek használata során hosszútávon fenntartható megoldásokra kell törekedni.

1 Jó állapot: A vizek VKI szerinti jó állapota egyrészt az emberi egészség, másrészt az ökoszisztémák igényeiből indul ki. Akkor tekinthetők a vizek jó állapotúak, ha az ivóvízellátásra, vagy egyéb célokra (rekreáció, öntözés) használt vizek minősége megfelel a használat által szabott követelményeknek, illetve a vizektől függő természetes élőhelyek működését nem zavarják az ember által okozott változások. Vízfolyások és állóvizek esetében a jó ökológiai és kémiai állapot vagy potenciál, a felszín alatti vizeknél a jó kémiai és mennyiségi állapot elérése a cél 2015-ig, 2021-ig, vagy 2027-ig.
A jó állapot eléréséhez szükséges javító beavatkozásokat össze kell hangolni a fenntartható fejlesztési igényekkel, de szigorúan a VKI elvárásainak figyelembevételével.

A vízgyűjtő-gazdálkodási terv tartalmazza az összes szükséges információt, amely a víztestekről rendelkezésre áll, az állapotértékeléseket eredményét, azt, hogy milyen problémák jelentkeznek a tervezési területen és ezek okait, továbbá, hogy milyen környezeti célokat tűzhetünk ki, és ezek eléréséhez milyen műszaki és szabályozási intézkedésekre, illetve pénzügyi támogatásokra, ösztönökre van szükség.

A vízgyűjtő-gazdálkodási tervezés során meghatározó jelentőséget kap a társadalmi párbeszéd. Számos esetben az intézkedések megvalósíthatósága az érintettek kompromisszum készségén is múlik. A végleges, felülvizsgált vízgyűjtő-gazdálkodási terv ezért folyamatos, nyílt tervezés és a társadalmi vélemények beépítése eredményeképpen készül el.

A VKI gyökeres szemléletváltozást jelentet a vízgazdálkodás területén, hiszen számos műszaki jellegű, jogi, gazdasági, intézményi, szervezeti intézkedés koordinált végrehajtását igénylí. **A VGT nem kiviteli terv, hanem a vizek állapotát feltáró és a „jó állapot” elérését megalapozó stratégiai terv.** Célja az optimális intézkedési változatok átfogó (műszaki, szabályozási és gazdasági-társadalmi szempontú) ismertetése, amely meghatározza az intézményi feladatokat, és amely alapján folytathatók, illetve elindíthatók a megvalósítást szolgáló programok (az intézkedések második csomagjának 2018-ig kell működésbe lépnie).

A tervezés módszertani elemeit részletesen az OVGT és mellékletei, háttéranyagai tartalmazzák. A részvízgyűjtő tervek a tervezési folyamat részvízgyűjtőre, alegységekre és víztestekre vonatkozó információit, eredményeit mutatják be, módszertani és országos jellemzők az OVGT-ben szerepelnek.

A módszertani útmutatók alapján a tervezésben az Európai Környezetvédelmi Ügynökség (EEA) által létrehozott DPSIR (Driving forces, Pressures, States, Impacts, Responses – hajtóerők/hatótényezők, terhelések, állapotok, hatások és válaszok) integrált keretmodellt alkalmazzuk.

A VGT szoros kapcsolatban van a terület- és településfejlesztési, illetve egyéb ágazati tervekkel: a vizek állapotának javítását szolgáló célkitűzések elérése érdekében olyan intézkedéseket javasol, amelyek kapcsolódnak a településekhez, a földhasználatokhoz, az ipari tevékenységekhez, a turizmushoz. A VGT tehát nem egy hagyományos vízgazdálkodási terv. Sok tekintetben a vízgazdálkodás témakörébe tartozó intézkedéseket határoz meg (vízminőségvédelem, a vizek állapotának értékelése, vízhasználatok szabályozása), miközben követelményeket támaszt számos más vízügyi szakmai tevékenységgel szemben (például árvízvédelem, vízkárelhárítás,
öntözés, hajózás, vízi energia-hasznosítás, vízi infrastruktúrák építése és működtetése stb.) is, sőt más ágazatok együttműködését is igényli.

Az egész országra kiterjedő VGT alapján elindulhat a megvalósítás és a részletes tervezés. A VGT-re épülhetnek konkrét projekt javaslatok, jogszabályi változások, a támogatási rendszerek céljai és prioritásai, illetve megfogalmazhatók a végrehajtás részletes kritériumai 2018. év végéig. A víztestek (vízfolyás, állóvíz, felszín alatti víz), valamint a vízgyűjtők szintjén történő kivitelezés pedig a konkrét területhez kötődő érdekeltek (állam, önkormányzat, gazdálkodó szervezet vagy magánszemély) feladata. A VKI célkitűzései keretet adnak a vízügyi hatósági tevékenységnek is. A VGT-ben megfogalmazott és hatályba léptetendő új, vagy módosított jogszabályokon keresztül a hatósági intézkedéseknek is a tervben kitűzött környezeti célok teljesítését kell segíteniük.
1 A Balaton részvízgyűjtő jellemzése

A hazai vízgyűjtő-gazdálkodási terv az ország egész területére, ezen belül 4 részvízgyűjtőre a Duna-közvetlen, a Dráva, a Tisza és a Balaton részvízgyűjtőkre készül. Ez a fejezet a legkisebb részvízgyűjtő, a Balaton területét mutatja be, amelyet az 1-1 térképmelléklet szemléltet.

1.1 Természeti környezet

A Balaton részvízgyűjtő terület 5 765 km², amelyen összesen 107 víztest (82 vízfolyás, 10 állóvíz és 15 felszín alatti) található. A tervezési terület természetföldrajzi témájú átnézeti térképe az 1-1 térképmellékletben.

1.1.1 Domborzat, éghajlat

A Balaton részvízgyűjtő domborzata viszonylag egyöntetű, területének jelentős része dombvidék a Balaton medencéje kivételével. Legmagasabb pontja a Kab- Hegy (599 m).

1.1.2 Földtan, talajtakaró

A Balaton részvízgyűjtő déli részén húzódik keresztül az eurázsiai és az afrikai közetlemezt elválasztó vonal.

A terület legidősebb közetei a Balaton medencéjét délkelet felől övező gránit és a Balaton-felvidékén föl-fölbükanó óidei palák (Alsóörs, Révfülőp), ill. a vöröshomokkő. Az északi part mentén magmás közéteket találunk. A Dunántúli-középhegység jelentős részét (Keszthelyi-hegység, Balaton-felvidék, Bakony) alkotó mészkő és dolomit a triászban jött létre. A pliocénben működő bazaltvulkánosság eredményei a Ság, a Somló, a Kab-hegy, az Agár-tető és a Tapolcai-medence tanúhegyei, mely utóbbiakat a pannon üledékekre ömlő bazaltláva védett meg a lepusztulástól.

1. fejezet A Balaton részvízgyűjtő jellemzése – 4 –
A Balaton részvízgyűjtőn a felső 10 m-ben található fedőkőzet képződmények között a vastag homok, a dolomit és finom kőzetliszt az uralkodó. A földtani képződmények felső pár métere meghatározza a fedőtalaj fizikai, kémiai tulajdonságait.

A terület legdominánsabb talajtípusa a barna erdőtalaj. A láptalajok részaránya ugyan nem jelentős, mégis fontos talajtípusunk ezen a részvízgyűjtőn, mert országosan is kevés helyen fordul elő. Itt - elsősorban a Kis-Balatonnál - viszont nagyobb összefüggő területeket borít.
1-3. ábra: Jellemző talajtípusok a részvízgyűjtők területén

![Diagram showing soil types](image)

(Forrás: TAKI, AGROTOPO^2)

Talajtermékenység szempontjából a meghatározó fizikai, kémiai és biológiai tulajdonságok jök, a kedvezőtlen talajkárosodások mértéke azonban viszonylag magasak. Jellemző károsodási forma a láposodás, valamint a csuszamlás általi veszélyeztés, ill. egyéb erózióveszély. Utóbbiak a Balaton medencéjétől délre húzódó térszíneken és a Zalai-dombság területén jellemzőek.

1.1.3 Vízföldtan

A Balaton részvízgyűjtő területe felszín alatti vizekben igen gazdag, elsősorban a rétegvizek jelenléte a jellemző. A karszt-hegységek – mint a Dunántúli-középhegység – hatalmas mészkőtömbjében egységes karsztvízszint alakult ki, amely a hegyegység peremén feltörő karsztforrásokat táplálja. A terület az átlagosnál nagyobb geotermikus gradiens következtében igen gazdag hévizekben is, nem ritkák a nagy mélységből feltörő 70-90 ºC-os hévizek sem (Hévíz). A Keszthelyi-hegység nyugati szegélyétől lépcsősen süllyedő aljzat a hegység közelében hideg, távolabb meleg termálkarszt vízet tárol. A talajvíz átlagos mélysége a dombvidéken ~ 2 m.

A rész-vízgyűjtő legismertebb természettudományos jelensége a világhírű, tőzegmedrű Hévízi-tó, melyet a Dunántúli-középhegységben beszivárgó és nagy felszínalatti áramlási rendszerekben mozgó különböző eredetű hideg és meleg víz táplál. A részvízgyűjtő felszín alatti ivóvíz-készletei főként a Balaton-felvidéken és a Zala folyó mentén, valamint a Balatontól DNy-ra húzódó területen találhatók.

1.1.4 Vízrajz

A részvízgyűjtő névadója a Balaton, amely Közép-Európa legnagyobbb természetes sekély tava, nyíltvízének területe: 589 km². A Balaton fő táplálója a Zala, a fölös vizeket a Sió vezeti le a Dunába. A gyorsan felmelegedő tó medencéje árkos vetődéssel keletkezett kb.15-20 ezer éve, tehát a tó fiatal negyedidőszaki képződmény. Hosszúsága északkelet-délnyugati irányban 78 km, szélessége 5-12 km (a Tihanyi szorosban 2 km), átlagos mélysége 3,3 méter, legmélyebb pontja a Tihanyi-kútnál (11 méter). Vízutánpótlását főleg a csapadék, a beömlő Zala-folyó és

^2 Az AGROTOPO az MTA Talajtani és Agrokémiai Intézetében kiépített térinformatikai alapú Agrotopográfiai térképsorozat tematikus adataiból kialakított számítógépes adatbázis, amely EOTR szabványos, 1:100.000 méretarányú és országos adatokat tartalmaz. Az adott felbontásban homogén agroökológiai egységekhez a termőhelyi talajadottságokat meghatározó főbb talajtani paraméterek tartoznak.
kisebb patakok adják. A Kis-Balaton a tó nyugati részén, a Zala-folyó által feltöltött, delta-jellegű elmocsarasodott őböl, amely nélkül a Zala-folyó hordaléka a Keszthelyi-őbölben ülepedne le. A Balaton és a Kis-Balaton is természetvédelmi értékei miatt védett terület. A Balaton egyik legjelentősebb turisztikai értékünk. Vízjárása szabályozott, vízminősége ma már kiváló. Ez annak az átfogó vízminőség-védelmi stratégiának köszönhető, melynek megvalósított elemei – jelentős beruházások árán – közel 50%-kal csökkentették a tó tápanyag-terhelését.

A részvízgyűjtő terület fő folyója a Zala. A Zalai dombság jellegzetes, párhuzamos észak-dél irányú völgyei (a mai Felső-Válicka, Foglár, Principális, Szévíz, Alsó-Zala) az ős-Duna elhagyott nyomvonalán alakultak ki, melynek mederanyaga napjainkban is megtalálható a Zala völgy teraszain, valamint a Zala környéki lápok finom üledékei alatt. A Zala forrásai a vas megyei Szalafő község határában, 310-320 m magasságban találhatóak.

1.1.5 Az éghajlatváltozás és vízgazdálkodási következményei

A Balaton részvízgyűjtőre az átlaghőmérséklet emelkedése mellett a következő évtizedekre az éves csapadék átlagos mennyiségének változása és a csapadékeloszlás átrendeződése (több csapadék télen, kevesebb nyáron) várható, továbbá a szélsőséges időjárási események gyakoriságának és intenzitásának növekedése.

1-4. ábra: Az évi középhőmérséklet területi átlaga a Balaton részvízgyűjtő területén 1951-2014

Forrás: OMSZ

Az éghajlatváltozás nemcsak a jövő, hanem már a jelen problémája is. Az elmúlt években rekord csapadékú és rekord száraz évek változtak egymást, melyhez gyakran a hőmérsékletet tekintve is kiemelkedő értékek társultak.

1-5. ábra: Az évi csapadékösszeg területi átlaga a Balaton részvízgyűjtő területén 1951-2014

<table>
<thead>
<tr>
<th>év</th>
<th>csapadékösszeg</th>
<th>lineáris fit</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>715.76</td>
<td>y = 0.4946x + 715.76</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Forrás: OMSZ

Az európai és hazai modellkutatások azt valósítústílók, hogy Magyarországon az éghajlatváltozás hatására módosulhat az országban rendelkezésre álló vizek mennyisége és minősége is. A legfrissebb vizsgálatok szerint Magyarország klímája valószínűleg mediterrán irányba fog eltolódni, magasabb átlaghőmérséklettel, kevesebb nyári csapadékkal, nagyobb potenciális párolgással, ennek nyomán kisebb átlagos felszíni lefolyással és felszín alatti vizeket tápláló beszivárgással. Emellett várható a szélsőséges időjárási események gyakoriságának és intenzitásának növekedése is, aminek következményeként időszakosan rendkívül nagy felszíni lefolyással (árvízzel és belvízzel) kell számolni.

3 VITUKI, OVF, KDT-VIZIG a Balaton vízhiáztartási tájékoztatói alapján
A rendelkezésre álló vízkészlet mennyiségét a lehullott csapadék és a területi párolgás különbsége határozza meg, amely az alábbi ábra tanúsága szerint csökkent.

1-6. ábra: Az évi csapadék és tényleges párolgás különbségének területi átlaga a Balaton részvízgyűjtő teületén 1951-2014 között

A tudományos elemzések alapján várható, hogy az elkövetkező évtizedekben jelentős mértékben megváltozó hőmérséklet- és csapadékviszonyok, az évszakok eltolódása, egyes szélsőséges időjárási jelenségek erősödése és gyakoriságuk növekedése veszélyezteti a természeti értékeinket, a vizeinket, az élővilágot, az erdőinket, a mezőgazdasági terméshozamokat, az épülethezűintéket és a lakókörnyezetünket, valamint a lakosság egészségét és életminőségét. Az ENSZ IPCC tudóscsoport állapította meg, hogy a klímaváltozás a biológiai sokszínűségre, azaz az élővilág fajgazdagságára gyakorolt hatása szempontjából Magyarország Európa egyik legsérülékenyebb országa.

Az éghajlatváltozás az egész Földön, Magyarországon és a részvízgyűjtőn is jelentős környezeti hajtóerő, amely fokozódik az éghajlatkutatók becslése alapján. A szélsőséges időjárási események elleni küzdelem fontos területe a hazai vízgazdálkodásnak.

A szélsőséges csapadékok növelik az árvízi és belvízi kockázatot. A jövőben várható extremitások miatt, főleg kis vízfolyásokon helyi jelentőséggel megváltozik a villámárvíz bekövetkezéseinek gyakorisága. A csapadék várható időbeli átrendeződése miatt változni fog a felszín vízkészlet mennyisége is. A teli csapadék egyre nagyobb mértékben fog eső formájában hullni, amely a teli lefolyás növekedését okozza és a jelenleginél korábbi és magasabban tetőző árhullámokat eredményezheti. A belvíz-kérdés az éghajlatváltozás alapvetően nem befolyásolja, a csapadék éven belül eloszlásának megváltozása miatt azonban továbbra is fel kell készülni tél végén, tavasz elején szélsőséges belvizek kialakulására.
A korábbinál kisebb nyári csapadék és jelentősebb potenciális párolgás hatására a nyári kisvizek számottevő csökkenése prognosztizálható, amely jelentősen csökkentheti a tározás nélkül hasznosítható felszíni vízkészleteket. A tározók méretét korlátozhatja a feltöltésüket meghatározó téli időszak szélsőségei, illetve párolgás-növekedés miatt bekövetkező vízveszteség. Hasonló okok miatt csökken a tavak természetes vízkészlete is. Azaz a jövőben a tavakban gyakrabban fog előfordulni tartósan alacsony vízállás. A Budapesti Műszaki Egyetem vizsgálatai alapján a Balaton 2003-as évben előállt vízszintcsökkenéséhez hasonló változás a jövőben 20-30 évente előfordulhat.

Forrás: EULAKES projekt

A kisvízi hozamok csökkenése érzékenyebben teszi a vízfolyásokat a szennyezőanyag-terhelésekkel szemben is. A kisebb vízmennyiség miatt a vizek hígítása csökkenthető, viszont a magasabb hőmérséklet növeli a biokémiai folyamatok sebességét, ezért egyes szennyezések lebomlása gyorsab lehet. A hirtelen keletkező, gyors árvizek által a vízgyűjtőkről nagyobb mennyiségben mosódik le szennyezőanyag, és romlik a vízfolyások tápanyagmérlege. Növekszik a havária események kockázata is.

A klímaváltozás hatása a felszín alatti vizek mennyiségét és minőségét is érinti. A csapadékban, a potenciális párolgásban és az általánosan érvényes szárazabb talajállapotok miatt a felszín alatti vizeket tápláló csapadék-utánpótlódás általános csökkenése várható. A szárazabb időjáráshoz kapcsolódó romló ökológiai állapot mellett felszín alatti vizektől függő ökoszisztémaik, vízves élőhelyek (pl. szikes tavak) válhatnak veszélyeztetett a klímaváltozás következtében. A kisebb beszivárgás ellenére, a korábbival azonos szennyezőanyag mennyiség mellett növekszik a nagy csapadékok hatására bemosódó szennyezőanyag koncentrációja.

Az aszály előfordulásának valószínűsége Magyarország egyes területein növekvő tendenciát mutat. Az elmúlt években a mérsékelt aszály előfordulásának valószínűsége - feltehetően az egyre
markánsabban jelentkező klimatikus változások jelként és következményeként - minden évszakban jelentősen nőtt, és emellett a tavaszi és téli időszakokban a rendkívüli aszályok előfordulásának valószínűsége is nagyobb lett.

A fentiek alapján a vízgazdálkodás területén fel kell készülni az egyre nagyobb gyakorisággal és váltakozó jelleggel előforduló vízbőségre, illetve vízhiányra. Az aszályos és belvízes évek gyakorisága, nagysága és kárkötéssel valószínűsége eltérő. A nagy kiterjedésű aszályos területek jövőbeni valószínűsége nagyobb, mint a lokális vagy kisebb területeket érintő bel- vagy árvizeknek. Ennek ellenére a gyakoribbak váló rendkívüli időjárási események, a lezúduló nagy esőzések, fokozódó veszélyt jelentenek és komoly károkat okozhatnak.

A részvízgyűjtőn az éghajlatváltozás miatt a vízgazdálkodási szélsőségek elleni küzelem jelentősége növekszik.

1.1.6 Élővilág

Annak ellenére, hogy a Balaton a legkisebb részvízgyűjtőnk, mégis 6 flórajárás osztozik a területén, növényvilága tehát igen változatos, egyik jellemző bennszülött növényfaja a magyar gurgolya (Seseli leucospermum). A terület fontos élőhelye a Balatont övező nádas, amely a halak, a kétáltú, a hüllők és a vízimadarak számos fajának szaporodó- és táplálkozóhelye. Területén húzódik a Balaton-felvidéki Nemzeti Park, valamint az Őrségi Nemzeti Park kisebb része és néhány nagy kiterjedésű Tájvédelmi Körzet is (pl. a Boronka-melléki TT). A Zala folyó mente és Balaton területe a Natura 2000 hálózat része. A Kis-Balaton ezen kívül szerepel a Nemzetközi Vadvizek jegyzékén (Ramsari terület). Kiterjedt erdős területek találhatók a részvízgyűjtőn, az erdősületségi arány majdnem eléri a 27%-ot.

1-1. táblázat: Az erdők fajfaj és védettség szerinti megoszlása a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Erdőterület részaranya</th>
<th>Balaton részvízgyűjtő %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdőterület összesen</td>
<td>26,7</td>
</tr>
<tr>
<td>Ebből:</td>
<td></td>
</tr>
<tr>
<td>kemény lombos</td>
<td>51,2</td>
</tr>
<tr>
<td>akác</td>
<td>21,9</td>
</tr>
<tr>
<td>lágy lombos</td>
<td>11,7</td>
</tr>
<tr>
<td>fenyő</td>
<td>14,9</td>
</tr>
<tr>
<td>vörösfenyő</td>
<td>0,3</td>
</tr>
<tr>
<td>Ebből:</td>
<td></td>
</tr>
<tr>
<td>védett erdő</td>
<td>21,1</td>
</tr>
<tr>
<td>fokozottan védett erdő</td>
<td>2,1</td>
</tr>
<tr>
<td>nem védett erdő</td>
<td>76,8</td>
</tr>
</tbody>
</table>

(Forrás: MgSzH Központ, Erdészeti Igazgatóság)

1.2 Társadalmi és gazdasági viszonyok

A vízgyűjtőn élők, a vízhasználók szociális és gazdasági körülményei alapvetően meghatározzák a tervezési területen lévő víztestek állapotát, a vízgazdálkodási problémákat és a megvalósítható intézkedések körét. Ugyanakkor a társadalmi és gazdasági viszonyok közismerten függnek a vizek mennyiségétől és minőségétől. A vízi környezet a fenntartható fejlődés egyik alapeleme. A jelentős vízgazdálkodási kérdések meghatározó hajtóereje a társadalom és a gazdaság, ezért stratégiai jelentőségű a társadalmi-gazdasági viszonyok elemzése.
A vízgyűjtők és a közigazgatási egységek (település, megye, régió, stb.) határai általában nem esnek egybe, ezért a Központi Statisztikai Hivatal (továbbiakban KSH) által közölt adatok vízgyűjtőkre történő kivételése becsléssel történik (a két leggyakoribb módszer az arányosítás a területtel, illetve a lakos számmal).

1.2.1 Településhálózat, népességföldrajz

A részvízgyűjtő három régió találkozásánál fekszik, így területe e 3 régió között oszlik meg. A vízgyűjtő nyugati fele a Nyugat-Dunántúli régióhoz tartozik (annak kb. 1/5 része tartozik a részvízgyűjtőhöz), keleti fele északon a Közép-Dunántúli (kb.1/6-rész), délen a Dél-Dunántúli régió (kb. 1/6 rész) területét alkotja. A Balaton részvízgyűjtő területén négy megye található (Zala, Veszprém, Somogy és kis részben Vas megye).

A részvízgyűjtő területe 5 757 km², lakossága 349 879 fő, népsűrűsége 60,7 fő/km², jóval az országos átlag alatt.

A részvízgyűjtő településeinek zöme alacsony népességű kistelepülés, mindösszesen 16 város van a területen, a legnagyobbak: Keszthely, Tapolca, Balatonfüred, Zalaegerszeg és Siófok, amely részben már a Duna részvízgyűjtőhöz tartozik. Közlekedés hálózatát tekintve északon a legjelentősebb a 71. sz. főút, délen forgalmi szempontból a legterheltebb az M7 autópálya. A balatoni hajózás elsősorban idegenforgalmi célokat szolgál.

1.2.2 Területhasználat

A vízgyűjtők környezeti állapotának értékelésekor, a víztestek diffúz szennyezésből származó terhéléseként, valamint többek között a csapadékból származó lefolyás és beszívárgás becslésekor a területhasználatokat is szükséges figyelembe venni.

1-8. ábra: Területhasználat megoszlása 2012-ben

(Forrás: FŐMI, CORINE)
1-2. táblázat: Területhasználatok megoszlása és változása a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Területhasználat</th>
<th>2000</th>
<th>változás</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km²</td>
<td>%</td>
<td>km²</td>
</tr>
<tr>
<td>Belterület</td>
<td>333</td>
<td>5,8</td>
<td>-0,1</td>
</tr>
<tr>
<td>Szántó</td>
<td>1777</td>
<td>30,8</td>
<td>-0,7</td>
</tr>
<tr>
<td>Szőlő, gyümölcsösös</td>
<td>264</td>
<td>4,6</td>
<td>-0,7</td>
</tr>
<tr>
<td>Vegyes mezőgazdasági</td>
<td>256</td>
<td>4,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Rét, legelő</td>
<td>694</td>
<td>12,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Erdő</td>
<td>1638</td>
<td>28,4</td>
<td>-0,01</td>
</tr>
<tr>
<td>Víznyíros terület</td>
<td>169</td>
<td>2,9</td>
<td>-0,2</td>
</tr>
<tr>
<td>Álló- és folyóvíz</td>
<td>634</td>
<td>11,0</td>
<td>0,1</td>
</tr>
<tr>
<td>Összesen</td>
<td>5 757</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Forrás: FÖMI, CORINÉ CLC2000 és CLC2012

A terület legnagyobb részét a szántók, ill. az erdők teszik ki, ezt követik a rét, legelő kategóriába sorolt területek. Országos összehasonlításban kiemelkedően magas a szőlők-gyümölcsösök részaránya ezen a részvízgyűjtő területen közel 3,9 %.

A CORIN CLC50 kategóriákat és a területfejlesztési ágazatban, a területrendezési tervek készítésére bevezetett módszert (9/2007 (IV.3.) ÖTM rendelet) a vízgyűjtőkre alkalmazva, elkészítették a vízgyűjtő területek biológiai aktivitásérték-szerinti minősítését.

A biológiai aktivitásérték alapján az ország területének legnagyobb része közepes (47%) vagy szegényes (40%) minősítésű. A kiváló állapotú területek aránya csupán 2,2 %. Ezzel szemben a Balaton részvízgyűjtőn kielégedően magas a jó minősítésű területek aránya és kis területen – a Balatonfüredi erdő TT területén - előfordul a kiváló minősítés is. Rossz minősítésű terület nincs, ami azt mutatja, hogy a biológiai állapot szempontjából mértékkedő, koncentrált antropogén hatások kis területre (nagyvárosok és iparvárosok) korlátozódnak. Ezek kedvezőtlen hatása csak mérsékelt módon érvényesülhet.
1-9. ábra: Vízgyűjtő területek minősítése biológiai aktivitásértékük alapján

1.2.3 Gazdaságföldrajz

A gazdaság állapotát a meghatározó ágazatok: az agrárgazdaság, az ipar, a turizmus továbbá a tercier szektor kiemelt ágazatai, üzleti és pénzügyi szolgáltatások, kiskereskedelem és fogyasztótárcsák, valamint az információs gazdaság helyzete alapján lehet felmérni. Az ipari tevékenységet itt leginkább a szőlő- és gyümölcsfeldolgozás képezi. A gazdasági jelleg 1.2.3,3. táblázat

1-3. táblázat: Gazdasági mutatók 2004 évben a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Összes népesség</td>
<td>fő</td>
<td>364 412</td>
</tr>
<tr>
<td>Bruttó hazai termék (GDP)</td>
<td>millió Ft</td>
<td>533 393</td>
</tr>
<tr>
<td>Gazdasági növekedés mértéke</td>
<td>%</td>
<td>7,3</td>
</tr>
</tbody>
</table>
A vízgyűjtő-gazdálkodási tervek készítése elsősorban a vízzel kapcsolatos ágazatok gazdasági jellemzőinek meghatározását igényli, ezért a továbbiakban ezeket tekintjük át.

A Dunántúlon az édesvízi halgazdálkodás több évszázados múltra tekint vissza. A földrajzi, vízi és klimatikus adottságok kedvezőek nem csak a hagyományos tógazdasági, hanem a természetes vízi halászathoz és az intenzív üzemi „iparszerű” haltermeléshez is. Nem meglepő tehát, hogy gazdasági jelentőségét tekintve a Balaton részvízgyűjtőn legnagyobb súlya a halastavi vízhasználatnak van, mennyisége évi 24 millió m³, öntözővízként mindössze 4 millió m³/év a vízfölhasználás, más típusú mezőgazdasági vízhasználat nincs a területen. A mezőgazdaság összes saját víztermelésének 6%-át adja a Balaton részvízgyűjtő. A halgazdálkodással szemben az öntözéses gazdálkodás kedvezőtlen helyzetben van, a szántóföldi növények megöntözött területe országosan a vetésterület 1,75 %-a, ez az érték a részvízgyűjtőn 1,6%.

A Balaton részvízgyűjtőn található az ország összes mezőgazdasági művelésbe vont területének ≈5%-a (=300 ezer ha), míg az összes öntözött területnek csak 1,6%-a, tehát az öntözövíz főhasználat ezen a vízgyűjtőn arányát tekintve nem jelentős. Az öntözhető és az öntözött területeken belül a szántóföldi területek öntözése a részvízgyűjtő területén csak 50% körül mozog. A Balaton vízgyűjtőjén a gyümölcsösök öntözési aránya jelentősebb (30% körüli), ahogyan a fiatal erdők vagy a gyümölcsösök és a gyümölcsösök öntözési aránya jelentősebb (30% körüli), ahogyan a fiatal erdősítéseké és (18%).

A Balaton rész-vízgyűjtőn igen alacsony az ipari vízhasználat mértéke (3 millió m³, ami az összes vízhasználat 6%-a). Az országos ipari vízhasználatból e rész-vízgyűjtő részesedése a 0,1 %-ot sem éri el. Legnagyobb mértékű a közüzemi vízkivétel az összes vízhasználat csaknem 50 %-át tesz ki.

Az ipari szennyezőanyag kibocsátás országosan és a rész-vízgyűjtőkön is általánosan csökkenő tendenciájú. Az ipari szennyvíz ezen a rész-vízgyűjtőn igen kis volumenű, összhangban az ipari vízfelhasználással.
Gazdaságunkra jellemző a **szolgáltatások** számának és arányának látványos előretörése. 2012-ben a nyilvántartott nyereségérdekeltőségű szervezeteknek közel 60%-a szolgáltató jellegű volt. Arányuk legnagyobb a közép-magyarországi régióban és a Balaton környékén.

2007 óta az ország minden településén van **közüzemi ivóvíz szolgáltatás.** Az ország kedvező hidrogeológiai adottságainak köszönhetően a közüzemi célra kitermelt és szolgáltatott víz több mint 94%-a felszín alatti eredetű és csak kb. 6%-a származik felszínű vízbeszerzésből. Felszíni vízkivétel a vízgyűjtőn a Balatonból történik. A részvízgyűjtőn a közművek által kitermelt ivóvízből a háztartásoknak szolgáltatott mennyiség 75%. A vízveszteség az országos átlag fölötti, 19,6%.

A Balaton részvízgyűjtő területén, az ivóvízvezeték-hálózatba bekapcsolt lakások aránya 2010 és 2013 között 92 %-ról 96 %-ra növekedett.

1-10. ábra: Vezetékes vízzel- illetve közcsatornával ellátott lakások száma a Balaton részvízgyűjtőn (2010-2013)

A települések vízellátásának célja, hogy a lakosság ivóvíz- és háztartási vízigényét biztosítja, valamint a közületek, közintézmények és a kisebb ipari üzemek ivóvíz minőségű vízzel való ellátása. 2013- ban a vízvezeték-hálózatba bekapcsolt lakások aránya a Balaton részvízgyűjtő területén elérte a 96 %-ot 2010-ben ez az érték 92 % volt).

A vízkészletek hosszú távú megörzése szempontjából nagy fontosságú a csatornázás és a szennyvíztisztítás fejlesztése. 2010-ben a részvízgyűjtő területén a közcsatornával ellátott lakások száma 56 % volt, ez az érték 2013-ra elérte a 82 %-ot.

A közműolló (az ivóvízvezetékkel ellátott és a közcsatorna-hálózatra rákötött lakások arányának különbsége) a Balaton részvízgyűjtő területén 2013- ban 14 százalékopontra zártult.

A közüzemi szennyvízelvezető-hálózat kiépítése az 1990-es évek közepé után felgyorsult. A Balaton részvízgyűjtőn, közműves csatornázással rendelkező lakások számát, arányát tekintve a 2010. évi állapothoz viszonyítva 2013 végén jelentősen megőrizte a csatornázottság (56 %-ról 82 %-ra emelkedett a csatornázással rendelkező lakások száma (1-10. ábra).
A szennyvíztisztítás mellékterméke a szennyvíz-iszap, amelynek mennyisége a Szennyvíz Program előrehaladásával nő. Ma Magyarországon a szennyvíz-iszap egyenegyedét még lerakókon helyezik el, annak ellenére, hogy az iszap mezőgazdasági szempontból értékes szerves tápanyag, amelyet célszerű lenne visszaforgatni a termőtalajba. Az utóbbi években javult a hasznosítás aránya. Általában a csatornába vezetett ipari szennyvizek a jogszabályoknak megfelelő minőségek és az üzemeltetők a mai kor követelményeinek megfelelő tisztítás-technológiákat alkalmaznak, így az iszapok hasznosítása lehetséges.

A vizi turizmus fogalmát a vízgyűjtő-gazdálkodási tervezésben a turisztikai terminológiánál szélesebb értelemben használjuk ide értve minden, a vízhez kötődő rekreációs tevékenységet, pl. a horgászat, termáltermezés.

1.3 A vízgyűjtő-gazdálkodási tervezés szereplői

1.3.1 Hatáskörrel rendelkező hatóság

Hazánkban a 2000/60/EK Víz Keretirányelv végrehajtásának irányításáért a Belügyminisztérium (1051 Budapest, József Attila u. 2-4.) felel, ezért a Belügyminiszter a hatáskörrel rendelkező hatóság vezetője.

A BM felelős:

- a vízgyűjtő-gazdálkodási terv elkészítéséért felelős szervezetek (OVF, VIzig-ek) tervezési munkájának koordinálásáért;
- az Európai Unió Bizottsága számára a jelentések elkészítéséért és elküldéséért.

Az egész országra kiterjedő első vízgyűjtő-gazdálkodási terv a Környezetvédelmi és Vízügyi Minisztérium irányításával, más minisztériumokkal együttműködve készült el a vízfolyások, az állóvizek és a felszín alatti vizek állapotának javítása, illetve megőrzése érdekében. A második terv a Belügyminisztérium felkérésére, a társminisztériumokkal együttműködve fog elkészülni.

Magyarország, a Duna-medencén belül, három nemzetközi részvízgyűjtőn (a Duna közvetlen, a Tisza, és a Dráva) osztózik a szomszédos országokkal. Ezek Magyarországra eső területei adják az ún. részvízgyűjtő tervezési területeket, valamint a Duna részvízgyűjtőjéből – jelentősége miatt – kiemelendő a Balaton részvízgyűjtője, így ez az országos tervezés negyedik részvízgyűjtője. A nemzetközi, valamint a hazai előírások kielégítése és a hatékony társadalmi véleményezés érdekében a tervezés hazánkban több szinten valósult meg:

- országos szinten az országos vízgyűjtő-gazdálkodási terv,
- részvízgyűjtő - Duna-közvetlen, Tisza, Dráva, Balaton - szinten (4 részvízgyűjtő terv),
- tervezési alegységek szintjén (összesen 42 alegységi terv)
- víztestek szintjén (a VKI előírásai szerint lehatárolt 889 vízfolyás szakaszt, 189 állóvizezet, 185 felszín alatti víztestet jelent).
1. térkép: Magyarország részvízgyűjtő területei

1.3.2 A tervezést végző szervezetek

A Balaton részvízgyűjtő Terv elkészítése és a részvízgyűjtőn belül a tervezés koordinációja a Közép-dunántúli Vízügyi Igazgatóság, Székesfehérvár feladata.

Az alegységi tervek elkészítése és helyi szinten az érdekeltek bevonása a területileg illetékes 3 vízügyi igazgatóság feladata, együttműködve a nemzeti park igazgatóságokkal, valamint a vízügyi és vízvédelmi, a környezetvédelmi és természetvédelmi hatóságokkal.

1.3.3 Érintettek

A vízzel kapcsolatos kérdésekben a társadalom minden tagja érintett. A társadalom bevonása a tervezésbe három szinten történik: legszélesebb körben az alegységeken, míg részvízgyűjtő

<table>
<thead>
<tr>
<th>Tervezési terület</th>
<th>Felelős</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1 Zala</td>
<td>Nyugat-dunántúli Vízügyi Igazgatóság, Szombathely</td>
</tr>
<tr>
<td>4-2 Balaton közvetlen</td>
<td>Közép-dunántúli Vízügyi Igazgatóság, Székesfehérvár közreműködik: Dél-dunántúli Vízügyi Igazgatóság, Pécs</td>
</tr>
</tbody>
</table>

1.3.4 Érintettek

A vízzel kapcsolatos kérdésekben a társadalom minden tagja érintett. A társadalom bevonása a tervezésbe három szinten történik: legszélesebb körben az alegységeken, míg részvízgyűjtő
szinten megyei és régiós hatáskörű, országos szinten országos hatáskörrel rendelkező állami és nem közigazgatási szervek, egyéb közigazgatási, tudományos és szakmai érdekképviselő, továbbá állampolgári (civil) szervezetek közvetlen megkeresésével. A véleményezési eljárásra magánszemélyek, illetve a nem közvetlenül megkeresett szervezetek, akár Magyarország határain kívül élők is, bármelyik szinten bekapcsolódhatnak a www.vizeink.hu honlap segítségével.

A vízgyűjtő-gazdálkodási terveket – a különböző tervezési szinteken – a vízgyűjtő-gazdálkodási tervezési szervek és korábban az Országos Vízgyűjtő-gazdálkodási Tanács tagjai véleményezik, és javaslatokat terjesztenek fel, amelyek beépülnek a végleges tervekbe.

1.4 Víztestek jellemzése

A Víz Keretirányelv a vizekkel kapcsolatos előírásait elvárásait és elvárásait az úgynevezett víztesteken keresztül érvényesíti, így a vízgyűjtő-gazdálkodási tervezés legkisebb alapelemei is a víztestek.

Magyarországon tehát, a VKI fogalom meghatározásait követve, a következő víztest fajták kerültek kijelölésre:

- **természetes felszíni vizek: vízfolyás és állóvíz víztestek,**
- **erősen módosított víztestek olyan természetes eredetű felszíni vizek, amelyek az emberi fizikai tevékenység eredményeként jelentősen megváltoztak,**
- **a természetes felszíni vizekhez hasonló mesterséges; valamint**
- **felszín alatti víztestek.**

A Balaton részvízgyűjtőn 185 felszín alatti víztest, valamint a kijelölt 1078 felszíni víztest közvetlen vízgyűjtői tőkéletesen lefedik. A Balaton részvízgyűjtő területen 92 felszíni víztest található, melyből 82 vízfolyás és 10 állóvíz. A Balaton részvízgyűjtő teljes területe az országhatáron belül található, ezért mentes a határvízi problémáktól. A víztestek elhelyezkedésének bemutatása kategóriánként az 1-3 térképtől az 1-10 térképig található a mellékletben.

1.4.1 Vízfolyás víztestek

A Víz Keretirányelv szerint a "vízfolyás" egy olyan szárazföldi vizet jelent, amely nagyobb részét a földfelszínén folyik, de útjának egy részén a felszín alatt is áramolhat.

Az EU Víz Keretirányelv alapján a 10 km²-nél nagyobb vízgyűjtővel rendelkező vízfolyásokat kellett kijelölni víztestként, mint a vízhalózat jelentős elemét vagy elemeit.

A víztest kijelölés felülvizsgálata

Magyarországon összesen 15 890 vízfolyást tartunk nyilván (melyek összes hossza 70 950 km).
Vízgyűjtő

Balaton részvízgyűjtő

A Balaton részvízgyűjtő jellemzése

Víztestként azonban csak 1321 vízfolyást és hozzájuk tartozó vízgyűjtőt jelöltünk ki, mint a vízhalózat jelentős eleme a 10 km²-es vízgyűjtő méretbeli alsó korlát figyelembevételével. A kijelölt víztestek összes hossza 19 126 km, amely mintegy 27%-a a teljes vízhalózatnak. A kisebb, hasonló vízfolyások egy víztestbe történő összevonása miatt (pl. Aranyos-patak és mellékvízfolyásai) az 1321 kijelölt folyóból, patakból, vagy csatornából 889 víztest került kialakításra. Ebből a Balaton részvízgyűjtő területén 82 található, amiből 31 sorolható a természetes kategóriájú vízfolyás víztesthez, a többi erősen módosított, vagy mesterséges.

A mérethatár alatti, kisebb jelentőségű vízfolyások ahhoz a víztesthez tartoznak, amelyiknek a közvetlen vízgyűjtőjén helyezkednek el. A VKI ezeket az úgynevezett „de minimis” vizeket is védi a vízgyűjtőn keresztül, probléma esetén ugyanúgy intézkedni kell, mintha víztest lenne.

A biológiai validáció eredményeinek figyelembe vételével a vízfolyásokra vonatkozó tipológia 15féle természetes típushoz hozzárendelhető, amelyek közül a 1-5. táblázatban találhatók meg a Balaton részvízgyűjtőn.

1-5. táblázat: A vízfolyások biológiai adatokkal igazolt típusai

<table>
<thead>
<tr>
<th>Biológiai típus kód</th>
<th>Hidromorfológia altípus</th>
<th>Tipus kód</th>
<th>Vízgyűjtő méret</th>
<th>Mederesés</th>
<th>Mederanyag</th>
<th>Geokémiai jelleg</th>
<th>Tengerszint feletti magasság</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>2S</td>
<td>kicsi</td>
<td>nagy esős</td>
<td>durva</td>
<td>meszes</td>
<td>dombvidéki-hegyvidéki</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>3S</td>
<td>közepes esős</td>
<td>közepes-finom</td>
<td>meszes</td>
<td>dombvidéki</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>3M</td>
<td>közepes esős</td>
<td>közepes-finom</td>
<td>meszes</td>
<td>dombvidéki</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>4L</td>
<td>nagy esős</td>
<td>közepes-finom</td>
<td>meszes</td>
<td>dombvidéki</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>6S</td>
<td>kicsi</td>
<td>kis esős</td>
<td>közepes-finom</td>
<td>meszes</td>
<td>síkvidéki</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>6M</td>
<td>közepes esős</td>
<td>közepes-finom</td>
<td>meszes</td>
<td>síkvidéki</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>7L</td>
<td>nagy esős</td>
<td>közepes-finom</td>
<td>meszes</td>
<td>síkvidéki</td>
<td></td>
</tr>
</tbody>
</table>

Természeti adottságainknak megfelelően a Balaton részvízgyűjtőnél a természetes eredetű víztestek között csupán egy nagy esős, dombvidéki-hegyvidéki víztest van. A természetes kategóriába sorolva csak három kis és négy nagy méretű víztest van, szemben a 26 dombvidékkivel, ahol közepes mederesés jellemző. A vízgyűjtők közet és talajösszetétele miatt a hazai vizek geokémiai jellege elégé hasonló. Míg hazai viszonylatban az összes vízfolyás közel 90 %-a meszes jellegű, addig a Balaton vízgyűjtőn ez az arány 100%. A mederanyag szemcsemérete a természetes víztestek esetében 1-nél durva, 25-nél durva és közepes-finom, 3-nál pedig közepes-finom. A Vízgyűjtőjük méretét tekintve 1-1 nagyon nagy és nagy, valamint 6 közepes és 21 kicsi vízgyűjtővel rendelkezik. A részvízgyűjtőn kijelölt vízfolyás a Zala (3 víztest), amely Duna-vízgyűjtőkerület szinten is kiemelt.

A VKI II. mellékletének 1.3 pontja előírja, hogy minden felszíni víztest típusra meg kell határozni a jellemző hidrológiai-, morfológiai és fizikai-kémiai feltételeket, amelyek a kiváló ökológiai állapothoz szükségesek, továbbá a biológiai referenciát minden biológiai minőségi elemre: fitoplankton, fitobentosz, makrofita, makrogerinctelen, és halak, amelyeket a kiváló ökológiai állapothoz tartozó értékek jellemzének.
A részvízgyűjtőn jellemző típusok referencia jellemzőinek leírását - hidromorfológiai, fizikai-kémiai és biológiai elemenként - az OVGT 1-2 melléklete tartalmazza.

1.4.2 Állóvíz víztestek

A Víz Keretirányelv szerint a “tó” egy szárazföldi felszíni állóvizet jelent, így tavainkat állóvíz vízestekbe soroljuk. Az állóvíz víztestként az 50 hektármal nagyobb természetes tavak és tócsorportok kerültek kijelölésre. Az állóvizek közé új kijelölésként felvételre kerültek a jelentősebb hullámterű holtágak az 50 hektáros mérethatár figyelembe vételével.

Magyarországon összesen 7587 tavat és vizes területet ("wetland") tartanak nyilván (összterületük: 2230 km²), víztestként azonban csak 828 állóvíz került kijelölésre a 0,5 km²-es méretheli al só korlát miatt. A vizes élőhelyek nem víztestként, hanem védett területként jelennek meg a vízgyűjtő-gazdálkodási tervben. A kijelölt tó víztestek összes vízfelülete 1180 km² (ennek közel felét a Balaton teszi ki). A kisebb tavakból álló tócsorportok (pl. Hortobágyi-öregtavak 10 db töből áll) egy víztestbe történő összevonása miatt a 828 kijelölt állóvízből 189 víztestet alakult ki, amelyből csak 33 sorolható a természetes kategóriájú állóvíz víztesthez (a többi erősen módosított, vagy mesterséges víztest: 1.4.3 fejezet). A természetes állóvíz víztesteket az 1-1 melléklet sorolja fel.

A Balatonnál 10 tavat, tározót jelöltünk ki víztestnek, amelyből csak e – maga a Balaton – sorolható a természetes kategóriájú állóvíz víztesthez (a többi erősen módosított, vagy mesterséges víztest).

Az állóvizekre vonatkozó tipológia 8 természetes állóvíz típust különböztet meg a biológiai adatok figyelembe vételével, amelyek közül a Balaton részvízgyűjtőn az alábbi táblázat bemutatott típusok találhatók meg:

1-6. táblázat: Az állóvizek biológiai adatokkal igazolt típusai a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Típus</th>
<th>Méret</th>
<th>Tengerszint feletti magasság</th>
<th>Geokémiai jelleg</th>
<th>Vízmélység</th>
<th>Vízforgalom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>10 km²</td>
<td>síkvidéki</td>
<td>meszes</td>
<td>> 3 m</td>
<td>Állandó</td>
</tr>
<tr>
<td>2</td>
<td>>10 km²</td>
<td>síkvidéki</td>
<td>szikes</td>
<td>< 3 m</td>
<td>Állandó</td>
</tr>
<tr>
<td>3</td>
<td><10 km²</td>
<td>síkvidéki</td>
<td>szikes</td>
<td>< 1 m</td>
<td>Időszakos</td>
</tr>
<tr>
<td>4</td>
<td>1-10 km²</td>
<td>síkvidéki</td>
<td>szikes</td>
<td>< 3 m</td>
<td>Állandó</td>
</tr>
<tr>
<td>5</td>
<td>0,5-1 km²</td>
<td>síkvidéki</td>
<td>szikes</td>
<td>< 3 m</td>
<td>Állandó</td>
</tr>
<tr>
<td>6</td>
<td><10 km²</td>
<td>síkvidéki</td>
<td>meszes vagy szerves</td>
<td>< 3 m</td>
<td>Állandó</td>
</tr>
<tr>
<td>7</td>
<td>>10 km²</td>
<td>dobvidéki</td>
<td>meszes</td>
<td>< 3 m</td>
<td>Állandó</td>
</tr>
</tbody>
</table>

Az állóvíz víztesteket jellemző adatok a mellékletek között az 1-1 mellékletben találhatóak.

1.4.3 Erősen módosított és mesterséges víztestek

A Víz Keretirányelv sajátos fogalma az “erősen módosított víztest” egy olyan természetes felszíni víztestet jelent, amely társadalmi, vagy gazdasági igények kielégítése céljára, emberi tevékenységből származó fizikai változások eredményeként jellegében lényegesen megváltoztott,
és amelyet a tagállam ekként kijelölt. Az erősen módosított kategóriába sorolt víztestek természetes eredetűek, azonban hidrológiájuk és/vagy morfológiájuk emberi beavatkozások, létesítmények hatására jelenleg jelentősen eltérnek saját természetes állapotuktól. Az ember által okozott változás olyan mértékű (és e módosítás az emberi igények miatt továbbra is fenntartandó), hogy a víztest vízfolyás/állóvíz kategóriáit vált – például völgyzárógátas tározók esetében - és emiatt a jó állapot nem érhető el.

A Víz Keretirányelv által használt másik fontos felszíni vízes kategória a "mesterséges víztest", amely emberi tevékenység eredményeként, kifejezetten valamilyen cél elérése érdekében létrehozott felszíni víztestet jelent. Ebbe a kategóriába azokat a víztesteket soroljuk, ahol a vízfelület létrehozása előtt szárazulat volt. Általában ebbe a csoportba sorolhatók a csatornák, a bányatavak és az oldaltározók is.

Az erősen módosított és mesterséges víztesteknél a maximális vagy jó öko-potenciál, mint célállapot meghatározásánál irányadó lehet az adott erősen módosított víztesthez leginkább hasonlító természetes víztípus jó állapota. Ugyanakkor ezeknél a víztesteknél a funkció fenntartása az elsődleges szempont (pl. belvíz csatornánál a vízelvezető képesség fenntartása, halastónál a hallényésztéshez szükséges körülmények fenntartása), ezért a környezeti célkitűzés meghatározható a használatlól függenül is, de törekedni kell a környezeti szempontból „jó gyakorlat” elérésére.

A víztestek határai a VKI II. melléklet 1.1. (v) bekezdésének figyelembe vételével felülvizsgálatra kerültek: külön víztestként kijelöltük és az erősen módosított víztestek közé soroltuk azokat a víztereket, amelyek kategóriáit váltottak, azaz jellemzően mederelzés miatt a vízfolyásból állóvíz jellegűvé váltak. Továbbá befolyásolta a vizsgálat menetét a DPSIR modell alkalmazása, amely a hajtóerő - terhelés - hatás láncolat követését igényli. Az erősen módosított és mesterséges víztest kategória megállapításának módszerét az OGVT 1-4 háttéranyag mutatja be.

A víztestek érő hidromorfológiai módosítások számbavételének eredményét az 1-2 melléklet tartalmazza, továbbá az előzetes erősen módosított besorolás az 1-1 melléklet felszíni víztestek listájában is jelezve van.

A VITAANYAG egyik célja, hogy a társadalom beleszólhasson a döntésekbe és a VKI szerint az erősen módosított besorolás az 1-1 melléklet felszíni víztestek listájában is jelezve van.

Az érintettekkel közösen az alábbiakat kell megfontolni:

1. Az azonosított beavatkozás megszüntetése veszélyezteti-e más cél/igény elérését vagy kielégítését, ha igen a veszélyeztetett cél/igény beletartozik-e a VKI által megadott körbe (környezeti cél, hajózás, tározás ivóvíz és öntözés célra, energiatermelés, ár- és belvízvédelem, rekreáció, egyéb fontos célok, igények).

6 MSZ EN 14614:2005 Vízminőség. Ütmutató szabvány folyóvizek hidromorfológiai jellemzőinek értékeléséhez
MSZ EN 15843:2010 Vízminőség. Ütmutató a folyami hidromorfológiai változások mértékének meghatározásához
MSZ EN 16039:2012 Vízminőség. Ütmutató szabvány a tavak hidromorfológiai jellemzőinek felméréséhez.
2. Az adott igény kiélégítése megoldható-e más, a jó állapot elérését nem befolyásoló módon, illetve annak megvalósítása nem jár-e aránytalan költségekkel, illetve a társadalom támogatja-e?

A Balaton részvízgyűjtőjén kijelölt víztesteknek csak 38%-a (31 db) természetes eredetű erősen módosított vízfolyás, mesterséges kategóriába 27% (22 db) sorolandó, míg természetes víztestek közé 35% (29 db) víztest tartozik. Az állóvíz víztestek esetében a 10 víztestből 6 erősen módosított, 3 mesterséges, 1 pedig természetes (11. ábra). A természetes, mesterséges, erősen módosított besorolású víztestek arányának változását a víztest kijelölés felülvizsgálata okozza, azaz nem jelent tényleges módosítottság változást.

1-11. ábra: A víztest kategóriák összehasonlítása az első és a második VGT ciklusban

1.4.4 Felszín alatti víztestek

A Víz Keretirányelv a következő felszín alatti vizekkel kapcsolatos fogalmakat vezeti be:

- **“Felszín alatti víz”** minden olyan víz, ami a föld felszíne alatt a telített zónában helyezkedik el, és közvetlen kapcsolatban van a földfelszínnel vagy az altalajjal.

- **„Felszín alatti víztest”** a felszín alatti víznek egy víztartón vagy víz tartókon belüli lehatárolható részét jelenti.

- **“Víztartó”** (vagy vízadó) olyan felszín alatti kőzettréteget vagy kőzettrétegeket, illetve más földtani képződményeket jelent, amelyek porozitása és áteresztő képessége lehetővé teszi a felszín alatti víz jelentős áramlását, vagy jelentős mennyiségű felszín alatti víz kitermelését.

A felszín alatti víztest (FAV) lehatárolás és jellemzés módszertan legfontosabb elemeit „a felszín alatti vizek vízsgálatának egyes szabályairól” szóló 30/2004 (XII. 30.) KvVM rendelet határozza
meg. A FAV-ok esetében a VKI felszín alatti leányirányelvét is figyelembe kell venni: 2006/118/EK a felszín alatti vizek szennyezés és állapotomlás elleni védelméről (továbbiakban: FAVI).

Magyarországon felszín alatti vizeinek széleskörűen hasznosítjuk, így az átlagosan 10 m³/nap-nál nagyobb hozammal megcsapoló vízadók mindenhol előfordulnak. A felszín közelében kijelölt víztestek felső határa a terepfelszínhez legközelebb található vízfelszín. A felszín alatti víztestek alsó határát pedig a már nem vizet, hanem szénhidrogéneket tároló kőzetek, vagy az úgynevezett „medence aljzat”, illetve alaphegység képezi. Hidraulikai szempontból az úgynevezett túlnyomásos térerz – ahova a gravitációs energia már nem képes lejutatni a csapadékból származó vizeket – kijelöli a felszín alatti víztestek természetes alsó határát.

A felszín alatti víztestek lehatárolásának módszere nem változott az első VGT óta, de a rendelkezésre álló újabb információk alapján módosult egyes víztestek határa. Elsősorban a karszt víztestek rétege változott meg, jelentősebb módosítások történtek még a porózus termál víztesteken, a többi rétegben nem számottevőek a javítások. A Balaton részvízgyűjtő esetében 4 a részvízgyűjtőhöz tartozó és 1 a részvízgyűjtővel érintett víztest határa módosult. A módosításokról készített jegyzéket az OVGT 1-5 háttéryanyag tartalmazza.

A Balaton részvízgyűjtőn 15 felszín alatti víztest lehatárolása történt meg az első VGT-ben, a víztestek listáját és a VKI II. melléklet 2. pontja alapján módosult egyes víztestek határa. Elsősorban a karszt víztestek rétege változott meg, jelentősebb módosítások történtek még a porózus termál víztesteken, a többi rétegben nem számottevőek a javítások. A Balaton részvízgyűjtő esetében 4 a részvízgyűjtőhöz tartozó és 1 a részvízgyűjtővel érintett víztest határa módosult. A módosításokról készített jegyzéket az OVGT 1-5 háttéryanyag tartalmazza.

A sekély porózus és hegyvidéki víztestek általában egy vízadót tartalmaznak, míg a porózus, a hegyvidéki és a porózus termál víztestek többet.

A legmelegebb vizeket (30 ºC fölött) kitermelő kutakat a Közép-dunántúli, illetve Nyugat-dunántúli termálkarszt víztestekben találhatjuk.

A részvízgyűjtőn 3 felszín alatti víztest határos valamely szomszédos országgal, de ezek közül egyik sem határral osztott víztest, ezek közül a kt.1.7 Közép-dunántúli termálkarszt víztest a Duna részvízgyűjtőhöz van besorolva, mivel csak áthúzódik a Balaton részvízgyűjtő déli aljzatában.

További fontos hidrogeológiai jellemzője a felszín alatti víztesteknek, hogy milyen kapcsolatban vannak a felszínű vizekkel, vizes élőhelyekkel. A részvízgyűjtőn 12 felszín alatti víztest van, amelynek lényeges víztől függő őkoszisztéma kapcsolata van („FAVÖKO”), döntő többségük forrásokat táplál, mint például a Tapolcafő-forrás, vagy a Hévízi-tóforrás.

A Balaton részvízgyűjtőn kiemelt a Dunántúli-középhegység karszt víztestei, amely egy hidraulikai egységet képezi, ezért a víztestek állapota csak együtt értékelhető. A Balaton részvízgyűjtőhöz csak három karszt víztest van besorolva az egyébként 12 víztestből álló főkarszt-víztárolóból, ezek közül a Balaton-felvidéki karszt hidraulikailag elköltődik a középhegységi karszt víztestektől.
1. fejezet A Balaton részvízgyűjtő jellemzése – 26 –

1-7. táblázat: Felszín alatti víztestek a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>vízadó típusa</th>
<th>vízadó érzékenysége</th>
<th>hidrodinamika</th>
<th>darab</th>
</tr>
</thead>
<tbody>
<tr>
<td>porózus</td>
<td>sekély (talajvíz)</td>
<td>vegyes áramlás</td>
<td>3</td>
</tr>
<tr>
<td>porózus</td>
<td>sekély (talajvíz)</td>
<td>feláramlás</td>
<td>2</td>
</tr>
<tr>
<td>porózus</td>
<td>nem sekély (rétegvíz)</td>
<td>vegyes áramlás</td>
<td>3</td>
</tr>
<tr>
<td>porózus hegyvidéki</td>
<td>sekély (talajvíz)</td>
<td>vegyes áramlás</td>
<td>2</td>
</tr>
<tr>
<td>vegyes hegyvidéki</td>
<td>nem sekély (rétegvíz)</td>
<td>vegyes áramlás</td>
<td>2</td>
</tr>
<tr>
<td>karszt</td>
<td>nyílt (fedetlen)</td>
<td>leáramlás, vegyes</td>
<td>2</td>
</tr>
<tr>
<td>karszt</td>
<td>fedett és termál</td>
<td>feláramlás</td>
<td>1</td>
</tr>
</tbody>
</table>

VKI II. melléklet 2.2 pontja előírja, hogy a felszín alatti víz jellemzésére a természetes háttérszint határértékek meghatározását, annak érdekében, hogy minősíteni lehessen a felszín alatti víztesteket. A felszín alatti víztest kémiai állapota akkor jó, ha a környezetben természetes körülmények között előforduló anyagok koncentrációja a háttérértékekhez közelebb, az ember által előállított szintetikus anyagoké pedig nullához közelebb.

A VKI 17. cikkelyében, illetve a FAVI 5. cikke előírja a megfordítási pont meghatározását a felszín alatti víztesteket érő jelentős terhelések és a tartósan emelkedő tendenciák azonosítása érdekében. Magyarország a sérülékeny víztestekben a megfordítási pontot a minőségi előírások, vagy küszöbértékek 75%-ában határozta meg, ugyanezt a védett vízadókra 30%-ban állapítottuk meg. A felszín alatti víz jó kémiai állapotára vonatkozó küszöbértékek megállapításához figyelembe vesszük a háttérértékeket, a kapcsolódó FAVÖKO-k érzékenységét, továbbá humán toxikológiai és ökotoxikológiai ismereteket, különösen tekintettel arra, hogy hazánkban uralkodóan felszín alatti vízből történik az ivóvízellátás. A háttér- és küszöbértékeket az OVGT 1-5 melléklete tartalmazza.

A Balaton részvízgyűjtőre besorolt 3 karszt víztest mindegyikénél alkalmazva lett az ökológiai küszöbérték a nitrát szennyezettség határértékeként, mivel mindegyik víztest táplál érzékeny felszíni vizeket (forrásokat, kiszívófolyásokat). Ezeknél a víztesteknél a szokásos 50 mg/l helyett 25 mg/l a nitrátra a küszöbérték.
2. fejezet Védett területek

A Víz Keretirányelv kiemelt figyelmet fordít a felszíni és felszín alatti vizek mellett a védett területekre is. A VKI szempontjából védettné számít minden olyan terület, illetve felszín alatti tér, melyet a felszíni és/vagy a felszín alatti vizek védelme érdekében, vagy közvetlenül a víztől függő élőhelyek és fajok megőrzése céljából valamely jogszabály erre kijelöl. Ezek közé tartoznak: az ivóvízkivételek védőidomai, illetve védőterületei, a tápanyag- és nitrát-érzékeny területek, a természetes fürdőhelyek, a természeti értékei miatt védett területek és a halak életfeltételeinek biztosítására kijelölt felszín alatti vízek. Ebben a fejezetben a védett területek kijelölésével, nyilvántartásával kapcsolatos információkat foglaljuk össze, a védett területek állapotértékelésével a 6.3 fejezet foglalkozik. A Balaton-részvízgyűjtőn a védett területek elhelyezkedését a 2-1 – 2-5 térképmellékletek mutatják be.

2.1 Ivóvízkivételek védőterületei

A VKI szerint napi 10 m³ ivóvizet szolgáltató, vagy 50 fő ivóvízellátását biztosító (jelenleg működő vagy erre a célra távlatilag kijelölt) vízkivétel környezetét (az érintett víztestet vagy annak a tagállam által kijelölt részét) védelemben kell részesíteni. Ennek a hazai joggyakorlat a közcélú vízbázisok esetén megfelel.

A felszíni vízkivételi művek természetes vagy mesterségesen felduzzasztott tavakból, felszíni vízfolyásokból nyerik vizüket, így alapvetően sérülékenyek. A felszín alatti vízbázisok többsége sérülékeny, mert olyan természeti-földtani környezetben található, ahol a terepfelszín alá kerülő szennyező anyagok – még ha évtizedek alatt is – de lejuthatnak a vízellátást biztosító víztérbe. Ezekben a vízbázisokon különösen fontos a biztonságba helyezés és a kockázatkezelés. A vízkészlet minőségét különleges intézkedésekkel kell megőrizni, pótolva a természetes védelem hiányát.

A vízbázisok védelmét a 123/1997. (VII. 18.) Korm. rendeletben 7 meghatározott jogszabályi kötelezettség írja elő, amely egyaránt vonatkozik a felszíni és a felszín alatti vízbázisokra.

A Balaton-részvízgyűjtőn lévő vízbázisok védőidomait és védőterületeit a 2-1 térképmelléklet mutatja be. A felszín alatti vízbázisoknál különböző lehet a védőterület státusza. A diagnosztikai vizsgálatok alatt helyszíni mérésekre alapozott, részletes számításokkal határozták meg a védőidomokat és védőterületeket (ün. számított védőterületek). A számítással, szerkesztéssel meghatározott védőterületek végződik formája a jogszabály szerint földhivatali, ingatlanhasználati térképen telekhatárokokhoz igazítva kerül kialakításra (ün. földhivatali változat). Becsült azok a védőterületeket is, amelyeknél a becslés közelítő módszerrel történt 2009-ben, vagy azt megelőzően.

7 123/1997. (VII. 18.) Korm. rendelet a vízbázisok, a távlati vízbázisok, valamint az ivóvízellátást szolgáló vízilétesítmények védelméről.
Az ivóvízkivételekkel és védőterületekkel kapcsolatos fontosabb információkat 2-1 melléklet táblázatai tartalmazzák.

A fogyasztók biztonságos vízellátása érdekében fontos lépések volt az ivóvíz minőségi követelményeiről és az ellenőrzés rendjéről szóló 201/2001. (X. 25.) Korm. rendelet 4. § (6) bekezdésében az üzemeltetők felelősségi körében az ivóvízbiztonsági tervek elkészítésének előírása, amelyet vizellátó rendszer méretének függvényében fokozatosan vezetnek be, a véghatáridő 2016. július 1:

- a több mint 100 000 főt ellátó rendszerek esetén legkésőbb 2012. július 1-jéig,
- az 50 000–100 000 főt ellátó rendszerek esetén legkésőbb 2013. július 1-jéig
- az 5000–49 999 főt ellátó rendszerek esetén 2014. július 1-jéig,
- az 50–4999 főt ellátó rendszerek esetén 2016. július 1-jéig kell benyújtani jóváhagyásra az érintett üzemeltetőknek az ivóvízbiztonsági tervet az illetékes országos, vagy területi népegészségügyi szervez.

2.1.1 Felszíni ivóvízbázisok

A felszíni vízbázisok fontosabb adatait a 2-1/a melléklet mutatja be.

6 123/1997. (VII. 18.) Korm. rendelet a vízbázisok, a távlati vízbázisok, valamint az ivóvízzellátást szolgáló vízlétesítményeké védelméről.
7 201/2001. (X. 25.) Korm. rendelet az ivóvíz minőségi követelményeiről és az ellenőrzés rendjéről
A felszíni vízre telepített vízkivétel védelme érdekében belső és külső, valamint hidrológiai védőövezetet kell kijelölni, amelynek szabályait a vízbázis-védelmi kormányrendelet 3. számú melléklete adja meg.

2.1.2 Felszín alatti ivóvízbázisok

Magyarországon az ivóvíz célú vízkivételek közel 95 %-a származik felszín alatti vízbázisból. Vízbázisnak együttesen a termelő objektumot, és azt a felszín alatti területt nevezzük, aholnann a termelőkút az utánpótlását kapja. A több mint 50 fő vízellátását biztosító 114 felszín alatti ivóvízbázis esik a Balaton-részvízgyűjtő területére. A 2-1/b melléklet táblázata nyújt ezekről a vízbázisokról áttekintést (település, üzemeltető, státusz, kitermelt mennyiség, védőterület, védőidom kijelölés időpontja, stb.). Az első VGT-hez képest az adatbázis annyiban változott, hogy belekerültek a kisebb, naponta kevesebb, mint 10 m³-t szolgáltató vízbázisok is. A részvízgyűjtő tekintve, 121 felszín és felszín alatti ivóvízbázis védőterületeinek és védőidomainak térképi állománya áll rendelkezésre, ebből 30 vízbázis esetében, védőterületet tekintve, csak 100 m sugarú bufferzóna van a termelő objektum(ok) körül (ebből 2 vízbázis rendelkezik védőidommal).

A vízadó szerint négyféle vízbázist különböztet meg a jogszabály. Az egyes típusok elkülönítése fontos a védett vízkészletek és a 6-3. fejezetben tárgyalt veszélyeztetettség szempontjából.

- **A karsztvízbázis**: olyan vízbázis, melyben az igénybe vett vagy arra előíranyzott vízkészlet a karsztosodott közete (mészkő, dolomit) pórusaiban, hasadékaiban, üregeiben helyezkedik el; lehet nyílt tükrű, amely a meteorológiai viszonyok közvetlen hatása alatt áll, vagy fedett. A nyilvántartásban 32 üzemelő karsztvízbázis található a Balaton-részvízgyűjtő területén.

- **A parti szűrésű vízbázis**: felszín víz közelében lévő felszín alatti vízbázis, melyben a vízkivételi művek által termelt víz utánpótlódása 50 %-ot meghaladó mértékben a felszíni vízből történő beregazelet származik. A meder és a termelő kút közötti úton a felszíni víz fizikai, kémiai és biológiai „szűréséről” a természet gondoskodik úgynevezett „ökoszisztéma szolgáltatást” nyújtva a Balaton-részvízgyűjtő területén parti szűrésű vízbázis nem található.

- **A rétegvízbázis**: olyan vízbázis, melynek megcsapott képződményei az első vízzáró, vagy félvágóteresztő réteg alatti, vagy 50 méternél mélyebben települt törmelékes vízadó közete. A Balaton-részvízgyűjtő területére 71 rétegvízbázis esik.

- **A talajvízbázis**: olyan vízbázis, melyben az igénybe vett vagy arra előíranyzott vízkészlet a törmelékes felszín közelében a közelében a rétegvízbázis talajvízbázisokból történő beszivárgásból származik. A meder és a termelő kút közötti úton a felszíni víz fizikai, kémiai és biológiai „szűréséről” a természeti gondoskodik úgynevezett „ökoszisztéma szolgáltatást” nyújtva a Balaton-részvízgyűjtő területén parti szűrésű vízbázis nem található.

Az üzemelő vízbázisok nagysága (kiépített kapacitása), termelése és védett vízkészlete nagyon eltérő (2-1/c melléklet) lehet. A legnagyobb védett vízkészletről rendelkező vízbázisok a parti szűrésű és a karsztos vízbázisok között fordulnak elő. A Balaton-részvízgyűjtő területén túlnyomóan karszt és rétegvizes ivóvízbázisok épültek ki. Az üzemelő vízbázisok összes védett

vízkészlete a Balaton-részvízgyűjtőn 198 637 m³/nap (országos 8,5 %-a). Az adatokból látható, hogy a védett vízkészlet mennyisége jóval meghaladja a ténylegesen kitermelt mennyiséget.

2-1. ábra: A vízbázisok megoszlása a vízkészlet szerint a Balaton-részvízgyűjtőn

2-2. ábra: A vízbázisok vízkészlet típusa és kapacitása a Balaton-részvízgyűjtőn

Az ivóvízbázisok védőterületeinek kijelölése és nyilvántartása
A közcelú felszín alatti ivóvízbázisok esetében a védőterületeket és védőidomokat hatósági határozattal kötelező kijelölni. A sérülékeny vízbázisok esetében belső, külső és hidrogeológiai
védőövezetekből áll össze a védőterület. A földtanilag védett (nem sérülékeny) vízbázisoknak csak védőidoma van, de a jogszabály szerint a kutak körül ekkor is kötelezően ki kell jelölni egy minimum 10 m sugarú belső védőterületet.

A belső védőterületeknek, hogy a termelőkutak körüli szigorú védelem mindig biztosítható legyen, állami illetve önkormányzati tulajdonba kell kerülniük. A többi védőterületen az ingatlan, illetve a létesítmény tulajdonosának, a tevékenység végzőjének kötelessége, hogy a védőterületi határozatban foglaltakat betartsa, és tevékenységét – amennyiben az szükséges, külön engedélyben, illetve kötelezésben kiadott előírások szerint - a vízbázis védelem szempontjait figyelembe véve végezze.

A kormányrendelet szerinti védőidomok és védőterületek meghatározására, az állapotértékelésre és a figyelőhálózat kiépítésére 1995-ben beruházási célprogram indult, amelybe előzetes szűrés alapján 614 üzemelő és 75 távlati vízbázis került.

1994-2004 közötti időszakban a központi költségvetés alapján, központi forrássország ütemében folyt a vízbázisok biztonságba helyezése. 2004-től a központi költségvetés erőteljesen lecsökkent, így a diagnosztikai vizsgálatok KEOP támogatás keretében folytatódottak. Országosan 64 üzemelő és 13 távlati vízbázis diagnosztikai vizsgálatra készült el ebből a területből. A közcelú sérülékeny üzemelő ivóvízbázisok védőövezeteinek meghatározására a KEOP-2.2.3/A konstrukcióban a távlati vízbázisokra pedig a KEOP-2.2.3/C konstrukcióban lehetett pályázni. A KEOP-2.2.3/B konstrukció a biztonságba helyezés intézkedéseinek megvalósítására nyújtott pályázati lehetőséget. A konstrukcióban 100%-os támogatás elnyerésére volt lehetőség, amelynek 85% Kohéziós Alap és 15% hazai társfinanszírozást jelentett. A projekteket számokban a következő táblázat mutatja be.

A célponton felüli számos védőterület/védőidom kijelölése az üzemeltető kezdeményezésére, az üzemeltető költségére történt. E munkák keretében többnyire a diagnosztikai vizsgálat elmaradt, és a védőterület/védőidom meghatározás csak a meglévő adatokra támaszkodott.

<table>
<thead>
<tr>
<th>konstrukció</th>
<th>projekt [db]</th>
<th>vízbázis [db]</th>
<th>pályázó</th>
<th>támogatás [millió Ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEOP-2.2.3/A</td>
<td>5</td>
<td>5</td>
<td>önkormányzat, üzemeltető vízmű</td>
<td>228</td>
</tr>
<tr>
<td>KEOP-2.2.3/B</td>
<td>0</td>
<td>0</td>
<td>önkormányzat, üzemeltető vízmű</td>
<td>0</td>
</tr>
<tr>
<td>KEOP-2.2.3/C</td>
<td>0</td>
<td>0</td>
<td>vízügyi igazgatóság</td>
<td>0</td>
</tr>
<tr>
<td>Összesen</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>228</td>
</tr>
</tbody>
</table>

2-1. táblázat: KEOP források felhasználása a vízbázisok biztonságba helyezésére a Balaton-részvízgyűjtőn
A védőidomok és védőterületek kijelölési folyamata a hatósági határozat kiadásával és ennek következményeként a belső és külső védőterületek földhivatali telekkönyvi bejegyzésével ér véget. A védőterülettel kapcsolatos többi információ a vízikönyvbe kerül bejegyzésre.

A határozatok kiadásában jelentős elmaradás van. A nyilvántartás szerint a Balaton-részvízgyűjtő területén lévő ivóvízbázisok közül mindössze 37 db közcélú vízbázis rendelkezik védőterületi határozattal. A határozattal nem rendelkező vízbázisok köztöbb jelentősök is vannak.

A védőterületek kijelölését nagyon sok esetben maga a vízbázis tulajdonosa, az önkormányzat akadályozza meg, mert település fejlesztési elképzelése ellenére a vízbázis védelme. A jogszabály norma szövege és a részletes korlátozásokat és tiltásokat tartalmazó 5. melléklet nincs összhangban, az 5. melléklet elnagylott, ugyanakkor kategorikus tiltásokat tartalmaz. A legtöbb probléma a karsztos, és a települési környezetben található vízbázisok esetében, a belső és külső védőterületek kijelölésével kapcsolatban menekül fel.

A vízbázisok állapotát és veszélyeztetettségét a 6.3.1 fejezet mutatja be. **Ásvány és gyógyvízvizek vízbázisai**

A minősített ásvány és gyógyvizeket szolgáló vízbázisokat a 2-1/d melléklet táblázata, az egyéb közcéllokat szolgáló (pl. palackozás, fürdő, élelmiszeripar) vízbázisokat a 2-1/e melléklet táblázata mutatja. A védőterületeknek a felszíni víztestekkel való kapcsolatát a 2-1/f melléklet tartalmazza.

2-2. táblázat: Az ásvány és gyógyvizek felhasználás szerint a Balaton-részvízgyűjtőn

<table>
<thead>
<tr>
<th>Felhasználás módja</th>
<th>Ásványvíz</th>
<th>Gyógyvíz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivási célú</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Fürdési célú</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Ivási és fürdési cél</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Palackozási célú</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Összesen</td>
<td>34</td>
<td>19</td>
</tr>
</tbody>
</table>
Az ásvány és gyógyvízok esetében nemcsak a felszíni szennyeződéstől kell védeni a vízbázist, hanem a minősítés alapját képező vízkémiai összetételeknél is stabilnak kell lennie (összetétel ismert és állandó). A legtöbb ásvány és gyógyvíz a felszín alatti vizeinkre általánosan jellemző kalcium-magnézium-hidrokarbonátos összetételű, de vannak közöttük különleges összetételű, pl. szulfátos, jodidos vízek).

2-3. táblázat: Az ásvány és gyógyvízek védendő vízkémiai jellege a Balaton-részvízgyűjtőn

<table>
<thead>
<tr>
<th>Vízkémiai jelleg</th>
<th>Ásványvíz</th>
<th>Gyógyvíz</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ca,Mg)(Cl,HCO₃)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(Ca,Mg)(SO₄,HCO₃)</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>(Ca,Mg)HCO₃</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>(Na,Ca)HCO₃</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(Na,Ca,Mg)HCO₃</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(Na,Mg)HCO₃</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Na(Cl,HCO₃)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2.2 Tápanyag- és nitrát-érzékeny területek

A Balaton-részvízgyűjtőre 92 felszíni állóvíz- illetve vízfolyás vízgyűjtő esik, melyek tápanyagérzékeny területek.

12 240/2000 (XII. 23.) Korm. rendelet a települési szennyvíztisztítás szempontjából érzékeny felszíni vizek és vízgyűjtő-területük kijelöléséről.

13 27/2006 (II. 7.) Korm. rendelet a vizek mezőgazdasági eredetű nitrát-szennyezéssel szembeni védelméről.

- a felszíni vizek védelme szempontjából: a Balaton, a Velencei-tó, és a Fertő-tó, valamint az ivóvízellátási célt szolgáló tározók vízgyűjtőterületei (7 250 km²);
- a felszín alatti vizek sérülékenysége alapján kijelölt területek (33 894 km²).

Ebbe a körbe tartoznak az üzemelő és távlati ivóvízbázisok (4 781 km²), ásvány- és gyógyvízhasznosítást szolgáló vízkivelekelet külön jogszabály szerint kijelölt vagy lehatárolt védőterületei (lásd 2.1 fejezet), valamint a felszín alatti vizek védelme szempontjából kiemelt egyéb területek: ahol a karsztos képződmények 100 m-nél kisebb mélységben találhatók, illetve ahol a fő porózus-vizadó összetétel teteje a felszíntől számítva 50 m-nél kisebb mélységben van. Az ivóvízbázisvédelmi szempontok érvényesítése a hazai sajátosságokat és prioritásokat tükrözi.

A 27/2006 (II. 7) Korm. rendelet további nitráterzékeny területeket jelöl ki: települések belterülete (7.264 km²), bányatavak 300 méteres parti sávja (541 km²), állattartó telepek, trágyatárolók, trágyafeldolgozás területe. Alapvetően a felszíni vizek, kisebb részben felszín alatti vizek állapotértékelésének eredményei alapján, felül kellett vizsgálni a nitráterzékeny területek kijelölését, újabb lehatárolási szempontokat határozott meg a 27/2006 (II. 7) Korm. rendelet 2013. évi módosítása: eutróf és potenciálisan eutróf állapotba kerülő felszíni víztestek közvetlen vízgyűjtői; valamint a felszíni víztestek közvetlen vízgyűjtői, ahol az ország jólélődő területének már közel 70%-a.

A Balaton részvízgyűjtőre 92 felszíni állóvíz- és vízfolyás vízgyűjtő esik, valamint 10 felszín alatti víztest beszivárgási területe, melyek nitráterzékeny területek.

A Balaton vízgyűjtőn jelenleg kijelölt nitráterzékeny és tápanyagérzékeny területeket a 2-2 térképmelléklet mutatja be. A 2-4. táblázat a nitrát-érzékeny területek kiterjedését foglalja összefonókénti bontásban. A tápanyag- és nitráterzékeny területek felszíni és felszín alatti vízvel való kapcsolatát a 2-2/a-b melléklet mutatja be.

14 43/2007 (VI. 1.) FVM rendelet a nitráterzékeny területeknek a MePAR szerinti blokkok szintjén történő közvetíteteléről
15 MePAR: Mezőgazdasági Parcella Azonosító Rendszer
2-4. táblázat: Nitrát-érzékeny területek jellemzői a Balaton-részvízgyűjtőn

<table>
<thead>
<tr>
<th>Nitrát-érzékeny terület típusa</th>
<th>Mennyisége (országosan)</th>
<th>Mennyisége (Balaton-rvgy)</th>
<th>Megjegyzés</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 2012. évi Nitrát országjelentésben, MePAR szinten szereplő területek</td>
<td>42 519 km²</td>
<td>5 691 km²</td>
<td>Tápanyag-érzékeny területek, felszíni és felszín alatti ivóvízbázisok, karsztos vízadók, porózus vízadók, bányatavak 300m-es partisáv, belterületek</td>
</tr>
<tr>
<td>A 2013. évi nitrátérzékeny területek</td>
<td>65 267 km²</td>
<td>5 734 km²</td>
<td>tartalmazza a 2012. évi területeket, minimális különbségekkel</td>
</tr>
<tr>
<td>2013. évi nitrátérzékeny területek új területei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eutróf és potenciálisan eutróf felszíni víztestek vízgyűjtői, nitrát meghaladhatja az 50 mg/l értéket</td>
<td>35 813 km²</td>
<td>43 km²</td>
<td>átfedésben egyéb nitrátérzékeny területekkel</td>
</tr>
<tr>
<td>felszín alatti víz nitrát koncentrációja meghaladhatja a 50 mg/l értéket</td>
<td>45 km²</td>
<td>0 km²</td>
<td></td>
</tr>
<tr>
<td>2012. és 2013. évi nitrátérzékeny területek növekedése</td>
<td>22 748 km²</td>
<td>43 km²</td>
<td></td>
</tr>
</tbody>
</table>

A nitrátérzékeny területek kijelölése évente aktualizálható és négyévenként felülvizsgálandó. A Balaton részvízgyűjtőn érdemi változás nem történt a 2013. évi felülvizsgálatkor, mivel már a kezdetektől a teljes vízgyűjtő nitrátérzékeny.

2012. január 1-jétől a HMGY rendelet16 vízminőségi célokat szolgáló területsávot, ügynevezett vízvédelmi sávot határoz meg a vizek partvonalától. A rendelet 1. számú melléklete („A Helyes Mezőgazdasági és Környezeti Állapot” előírásai) értelmében a vízvédelmi sávokra vonatkozó előírások a következők: Nem juttatható ki

- műtrágya a MePAR-ban grafikusan megjelölt felszíni vizek partvonalától mért 2 méteres sávban;
- szervestrágya a MePAR-ban grafikusan megjelölt 5000 négyzetméter feletti állóvizek partvonalától mért 20 méteres sávban, a völgyzáró gátas halastavak esetében a partvonalától mért 5 méteres sávban, a MePAR-ban grafikusan megjelölt egyéb felszíni
vízfolyások partvonalától mért 5 méteres sávban, azzal, hogy a védőtávolság 3 méterre csökkenthető, ha a mezőgazdasági művelés alatt álló tábla 50 méternél nem szélesebb és 1 ha-nál kisebb területű.

A vízvédelmi sáv kijelölése és a HMKÁ előírások bevezetése döntő fontosságú első lépések voltak a parti sáv ökológiai célú helyreállítására érdekében. Országosan 64 880 hektár a kijelölt vízvédelmi sáv területe, amelyből 4 289 ha a Balaton részvízgyűjtőn található a vízfolyások és állóvizek partja mentén. A vízvédelmi sávoknak 2014-es gazdálkodási évtől kezdődően az agrártámogatási rendszer „zöldítésében” jelentős szerepük van. A zöldítés minden eleme pozitívan hat a vizek állapotára, de a transzport útvonalakba történő beavatkozások érdekében és közvetlenül a vizek ökológiai állapota szempontjából legfontosabb a vízvédelmi sáv, amelyet tehát a vizek és a part ökoszisztéma szolgáltatásokban betöltött jelentős szerepe miatt sorolnak az ökológiai jelentőségű területtípusok közé17.

2.3 Természetes fürdőhelyek

A fürdővizek kijelölésének elveit a 78/2008 (IV. 3.) Korm. rendelet18 határozza meg. A rendelet szabályozza a fürdőhely kijelölésének eljárási rendjét, a vízminőség ellenőrzésének szabályait, a minősítés és a védőterület kijelölésének módját.

A rendelet hatálya a természetes fürdővizekre terjed ki és nem vonatkozik medencés közfürdőre, a gyógyfürdőre, valamint olyan mesterségesen létesített vízerekre, amelyek nincsenek összeköttetésben sem felszín, sem felszin alatti vizekkel. A fürdővizek kijelölése a fürdési szerez megelőzően történik. A fürdővíz kijelölésére akkor kerülhet sor, ha a fürdőzők számának napi átlaga legalább 8 egybefüggő nap iránti héten várhatóan meghaladja a 100 főt, valamint ha a fürdőzés 78/2008 (IV. 3.) Korm. rendelet szerint szükséges közegezésügyi követelményei teljesülnek. Számuk évente változik az aktuális igények és a feltételek teljesítése függvényében.

A fürdőhely védőterülete a fürdőhely területét övező, a víz minőségeinek megóvása érdekében meghatározott szárazföldi terület és vízfelszín, ennek jelzése a fürdőhely üzemeltetőjének a feladata.

A fenti jogszabály és a VKI védettségre vonatkozó követelményei értelmében a fürdőhely kijelölésével érintett víztesteket a tervben meg kell jelölni, hogy az ebből adódó különleges követelményeket figyelembe lehessen venni az állapotértékelés (lásd még az 6.5 fejezetet), a célkitűzések és az intézkedési programok tervezése során. Az intézkedési programok tervezésekor a vízminőségi célok (fürdővíz követelmény) teljesíthetőségét a szennyvízbevezetésekre vonatkozó hatástávolságok betartásával kell biztosítani. A strandok lokális szennyezettségből származó problémák megoldása (például a higiénés előírások nem megfelelő biztosítása) nem tartozik a VGT hatáskörébe. A természetes fürdőhely háttér szennyezettségének növekedésével összefüggő vízminőség romlás megakadályozására (bakteriológiai szennyezettség, vízvirágzás) az intézkedési programoknak ki kell terjednie.

18 78/2008 (IV. 3.) Korm. rendelet a természetes fürdővizek minőségi követelményeiről, valamint a természetes fürdőhelyek kijelöléséről és üzemeltetéséről

A fürdőhelyek listája a 2-3 mellékletben található. A mellékletben azonosítjuk azokat a víztesteket, melyek részei (egyes szakaszai) fürdési célú vízhasználat miatt védettséget élveznek. A víztestek mellett megtalálható a víztesten belül kijelölt fürdőhelyek száma is. A táblázatban a 2013-ban üzemelő strandok száma mellett az az is szerepel, hogy a 2006-2013 közötti időszakban a víztesten összesen hány strandot tartottak természetes fürdőhelyként nyilván. Az összesítésnél azokat a fürdőhelyeket is számítjuk, amelyek csak időszakosan (egy-egy évben) üzemeltek, illetve amelyek vízminőség ellenőrzése nem, vagy csak hiányosan történt meg. Ezen kívül a 2-3 melléklet utolsó táblázata olyan kicsi víztereket sorol fel, amelyek nem lettek víztestként kijelölve, hanem csak valamelyik víztesthez tartozó vízgyűjtőn helyezkednek el és fürdőhelyként nyilvántartásba vették.

A térképen megjelenített fürdésre használt vizek száma a mellékletben felsoroltakhoz képest nagyobb. A különbséget azok az okozzák, melyeknél a fürdési célú vízhasználat ellenére a kijelölésre nem került sor (például azért mert fürdésre nem alkalmas a víz minősége miatt). A VKI értelmében azonban a védettség csak a jogszabály szerint kijelölt és nyilvántartott fürdővizekre érvényesíthető.

2.4 Természeti értékei miatt védett területek

A vízgyűjtő-gazdálkodás egyes szabályairól szóló 221/2004 (VII. 21.) Korm. rendelet a víz jó állapota/potenciálja elérése és fenntartása a természetvédelmi célok egyidejű teljesítésével lehet eredményes, mivel az élőhelyek jelentős értékű ökoszisztéma szolgáltatásokat nyújtanak. A természeti értékei miatt védett területek kiemelten fontosak a vizek ökológiai állapotát tekintve, és a 2006-2013 közötti időszakban a víztesten összesen hány strandot tartottak természetes fürdőhelyként nyilván. Az összesítésnél azokat a fürdőhelyeket is számítjuk, amelyek csak időszakosan (egy-egy évben) üzemeltek, illetve amelyek vízminőség ellenőrzése nem, vagy csak hiányosan történt meg. Ezen kívül a 2-3 melléklet utolsó táblázata olyan kicsi víztereket sorol fel, amelyek nem lettek víztestként kijelölve, hanem csak valamelyik víztesthez tartozó vízgyűjtőn helyezkednek el és fürdőhelyként nyilvántartásba vették.

2.4 Természeti értékei miatt védett területek

A vízgyűjtő-gazdálkodás egyes szabályairól szóló 221/2004 (VII. 21.) Korm. rendelet19 szerint a víz jó állapota/potenciálja elérése és fenntartása a természetvédelmi célok egyidejű teljesítésével lehet eredményes, mivel az élőhelyek jelentős értékű ökoszisztéma szolgáltatásokat nyújtanak. A természeti értékei miatt védett területek kiemelten fontosak a vizek ökológiai állapotát tekintve, és a 2006-2013 közötti időszakban a víztesten összesen hány strandot tartottak természetes fürdőhelyként nyilván. Az összesítésnél azokat a fürdőhelyeket is számítjuk, amelyek csak időszakosan (egy-egy évben) üzemeltek, illetve amelyek vízminőség ellenőrzése nem, vagy csak hiányosan történt meg. Ezen kívül a 2-3 melléklet utolsó táblázata olyan kicsi víztereket sorol fel, amelyek nem lettek víztestként kijelölve, hanem csak valamelyik víztesthez tartozó vízgyűjtőn helyezkednek el és fürdőhelyként nyilvántartásba vették.

19 221/2004 (VII. 21.) Korm. rendelet a vízgyűjtő-gazdálkodás egyes szabályairól
20 1996. évi LIII. törvény a természet védelméről
az egyedi jogszabályal védett természeti területek (nemzeti parkok, tájvédelmi körzetek, természetvédelmi területek);

- a Ramsari Egyezmény keretében kijelölt területek.

A különböző szempontok szerint, Balaton részvízgyűjtőn a jogszabályi védettség alá tartozó területeket, az érintett felszíni víztestek megjelölésével a 2-4 melléklet (hazai természetvédelmi területek, Natura2000, Ramsari védett területek) tartalmazza.

Az országos védelem alatt álló, illetve egyedi jogszabály által védett területeket, a Ramsari Egyezmény hatálya alá tartozó és a Natura 2000-es területeket térképen mutatja be a VGT. Az „ex lege” védett természeti területek helyrajzi számos listáit miniszteri tájékoztatón keresztül hirdették ki. A barlangok nyílvántartásában 4098 barlang szerepel, melyből a Balaton-részvízgyűjtőn 190 található, melyekhez 188 védőövezet tartozik. Forrásként több mint 870 objektum szerepel a nyílvántartásban a részvízgyűjtőhöz kapcsolódóan. Az országos védelem alatt álló, valamint a Ramsari egyezmény hatálya alá tartozó területeket a 2-4 térképmelléklet, a Natura 2000-es területeket pedig a 2-5 térképmelléklet mutatja be.

A víztestek érintettségét a VGT keretében elkészült nyílvántartás tartalmazza. Közvetlen az érintettség, ha a vízfolyás víztest keresztülfo lyik természetvédelmi területen, az állóvíz víztest ilyen területre esik. Ezen kívül, az érintettség összesítésekor a víztestekkel közvetlenül nem érintkező, a vízgyűjtőterületükön található jelentős védett területeket is figyelembe kell venni. Természeti értékei miatt védett területek a felszíni kapcsolattal rendelkező felszín alatti víztestek (beszívárgási területei) szinte mindegyikét (112 víztestet) érintik, valamint azok a termálkarszt víztestek, amelyek forrása táplál természeti értékei miatt védett területet, mint például a Nyugat-dunántúli termálkarszt a Hévízi-tavat. Az érintettségére vonatkozó összefoglaló adatokat a 2-5., 2-6. és 2-7. táblázatok tartalmazzák.

2-5. táblázat: Vízfolyás víztestek természeti értékei miatt védett területtel való érintettsége a Balaton-részvízgyűjtőn

<table>
<thead>
<tr>
<th>Védettségi kategória</th>
<th>Érintett vízfolyás víztest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>benne van</td>
</tr>
<tr>
<td>Nemzeti Park, Tájvédelmi Körzet, Természetvédelmi Terület, ex-lege</td>
<td>3</td>
</tr>
<tr>
<td>Natura 2000 terület</td>
<td>2</td>
</tr>
<tr>
<td>Természetmegőrzési (KJTT, KTT)</td>
<td>2</td>
</tr>
<tr>
<td>Madárvédelmi (KMT)</td>
<td>0</td>
</tr>
<tr>
<td>Ramsari terület</td>
<td>0</td>
</tr>
<tr>
<td>Összes érintett FEV</td>
<td>3</td>
</tr>
</tbody>
</table>
2-6. táblázat: Állóvíz víztestek természeti értékei miatt védett területtel való érintettsége a Balaton-részvízgyűjtőn

<table>
<thead>
<tr>
<th>Védettségi kategória</th>
<th>Érintett állóvíz víztest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>benne van</td>
</tr>
<tr>
<td>Nemzeti Park, Tájvédelmi Körzet, Természetvédelmi Terület, ex-lege</td>
<td>2</td>
</tr>
<tr>
<td>Natura 2000 terület</td>
<td>7</td>
</tr>
<tr>
<td>Természetmegőrzési (KJTT, KTT)</td>
<td>6</td>
</tr>
<tr>
<td>Madárvédelmi (KMT)</td>
<td>4</td>
</tr>
<tr>
<td>Ramsari terület</td>
<td>4</td>
</tr>
<tr>
<td>Összes érintett FEV</td>
<td>7</td>
</tr>
</tbody>
</table>

2-7. táblázat: Felszín alatti víztestek természeti értékei miatt védett területtel való érintettsége a Balaton-részvízgyűjtőn

<table>
<thead>
<tr>
<th>Védettségi kategória</th>
<th>Érintett felszín alatti víztest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>db</td>
</tr>
<tr>
<td>Nemzeti Park, Tájvédelmi Körzet, Természetvédelmi Terület, ex-lege</td>
<td>11</td>
</tr>
<tr>
<td>Natura 2000 terület</td>
<td>10</td>
</tr>
<tr>
<td>Természetmegőrzési (KJTT, KTT)</td>
<td>10</td>
</tr>
<tr>
<td>Madárvédelmi (KMT)</td>
<td>6</td>
</tr>
<tr>
<td>Ramsari terület</td>
<td>5</td>
</tr>
<tr>
<td>Összes érintett FAV</td>
<td>11</td>
</tr>
</tbody>
</table>

2.4.1 A halak életfeltételeinek biztosítására kijelölt felszíni vizek

A halak életfeltételeinek biztosítása érdekében kijelölt, védelemre vagy javításra szoruló felszíni vizek azok a külön jogszabályban meghatározott vízfolyások és állóvizek, amelyek fenntartható módon képesek biztosítani, illetve a vízszennyezettség csökkentése vagy megszüntetése esetén képesek lennének biztosítani a vízre jellemző őshonos halfajok természetes biológiai sokféleségét. A védettséget az ivóvízkivételre használt, vagy ivóvízbázisnak kijelölt felszíni víz, valamint a halak életfeltételeinek biztosítására kijelölt felszíni vizek szennyezettségéhez határértékeiről és azok ellenőrzéséről szóló 6/2002 (XI. 5.) KvVM rendelet mondja ki, amely megfelel a halak életének megőrzése érdekében védelmet vagy javítást igénylő édesvizek minőségéről szóló 2006/44/EK Irányelvénnek. Ezen rendeletek hatálya nem terjed ki a halastavi és az intenzív haltermelés céljait szolgáló természetes vagy mesterséges tavak vízére.

A halas vizeket a rendelet három típusba sorolja, melyekben előforduló fajok életfeltételeinek biztosításához a rendelet 4. számú mellékletben vízszennyezettségéhez határértékeket ír elő:

- **Pisztrángos (salmonid) vizek**: azon halas vizek, amelyek pisztráng szinttájú halfajokkal jellemezhetők (jellemző fajaik a sebes pisztráng (Salmo trutta m. fario), a fürge csele (Phoxinus phoxinus), a kővi csík (Barbatula barbatula) stb.).
Márnás vizek: azon halas vizek, amelyek márna szinttájú halfajokkal jellemezhetők (jellemző fajaik a paduc (Chondrostoma nasus), a márna fajok (Barbus spp.) és a bucó fajok (Zingel spp.), a leánykoncér (Rutilus pigus virgo) stb.),

Dévéres (cyprinid) vizek: azon halas vizek, amelyek jellemzően a dévér szinttájú, valamint a tavi, illetve a mocsári halfajokkal jellemezhetők (jellemző fajaik a dévér (Abramis brama), a vörösszárnyú keszeg (Scardinius erythrophthalmus), a sügér (Perca fluviatilis), a cukás (Esox lucius), a ponty (Cyprinus carpio), a lápi póc (Umbra krameri), az angolna (Anguilla anguilla) stb.).

A kijelölést az illetékes környezetvédelmi hatóságok ötévente felülvizsgálják. Jelenleg hét vízfolyás (illetve azoknak meghatározott szakaszai) tartoznak a rendelet hatálya alá, ezek mindegyike víztest, melyek ezáltal védettvé válnak. A Balaton részvízgyűjtőn 1 „halasvíz” található. Az érintett víztest, valamint a halélettani szempontból védett kijelölt szakasz a teljes víztest hosszának viszonyított arányát a 2-8. táblázat adja meg.

2-8. táblázat: Halállomány szempontjából védett vizek és az érintett víztestek a Balaton-részvízgyűjtőn

<table>
<thead>
<tr>
<th>VIZIG</th>
<th>Vízfolyás</th>
<th>Határoló szelvények</th>
<th>Szakasz</th>
<th>Érintett víztest</th>
<th>Arány</th>
<th>Kategória</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Tapolca-patak</td>
<td>4+500-8+600</td>
<td>Hegymagas vízmércső és Tapolca vízmércső között</td>
<td>AEQ032 Tapolca-patak</td>
<td>39%</td>
<td>Dévéres víz</td>
</tr>
</tbody>
</table>

A VKI IV. melléklet 1 (ii) pontjában előírt - a gazdasági szempontból fontos vízi állatfajok védelmére kijelölt területek – Magyarországon nincsenek, mivel hazánkban a halgazdálkodás nem jelentős gazdasági ágazat. A gazdasági elemzésekhez készített WATECO útmutató21 alapján a vízi állatfajok fontosságát a vízhasználatok gazdasági elemzése keretében kell vizsgálni statisztikai adatokra alapozva, a teljes vízgyűjtőkerület, vagy országos, esetleg részvízgyűjtő szinten. A KSH adatai alapján a halgazdálkodási ágazat – tógazdaságok és természetes vízi halászat – által létrehozott bruttó hozzáférétt értéke csak 0,015%-a a teljes nemzetgazdaság bruttó hozzáadott értékének, a mezőgazdaságon belül is csak 0,34%-ot tesz ki. A halgazdálkodás bruttó hozzáadott értéke 3,6 milliárd Ft volt 2010-ben és 2011-ben, míg 2012-ben ez 3,4 milliárd Ft-ra csökkent a KSH nyilvántartása szerint. Ezek alapján a VKI gazdasági elemzés megállapította, hogy a tó- és természetes vízi halgazdaságok országosan nem képviselnek jelentős nemzetgazdasági ágazatot. Mindenek ellenére vannak olyan térségek, ahol lokálisan fontos gazdasági tevékenységet jelent a halgazdálkodás valamelyik fajtáján. Ez jellemző a Balaton részvízgyűjtőre is, ahol jelentős a horgászat, amely a turizmus egyik fontos ágazata. Ugyanakkor több jelentős haltermelő is található a vízgyűjtőn, bár az is megjegyzendő, hogy a múltban jelentős balatoni halászati tevékenység ma már csak az ökológiai célok kielégítéséért szolgálja.

3 Emberi tevékenységből eredő terhelések és hatások

Az emberi tevékenységekből eredő terhelések számbavételének és a hatások elemzésének célja, hogy a vizek állapota szempontjából jelentős vízgazdálkodási kérdések feltárása megtörténjen. A vízgyűjtő-gazdálkodási tervbe foglalt intézkedésekkal a humán terhelésekkel, bevankozásokkal okozott problémákat kell megszüntetni, vagy csökkenteni; a Víz Keretirányelv nem célja minden vízügyi probléma megoldása. A VKI, azaz a vizek állapota szempontjából nem számít jelentős vízgazdálkodási problémának például, hogy:

- hazánkban a vizek térben és időben egyenlőtlenül oszolnak el, ezért az aszály- és az árvíz veszélyeztetettségünk jelentős, illetve rendszeresek a vízkár események;
- a felszín alatti vizek természetes arzén tartalma az országon belül jelentős területeken meghaladja az ivóvízminőség szempontjából megfelelő határértéket, ezért ivóvízként csak tisztítás után használható fel.

Számos, a fenti két példához hasonló vízügyi probléma kezelésének módját más irányelvek (árvízi, ivóvíz, nitrát, stb.) határozzák meg, viszont ezek mindegyike alárendelődik a Víz Keretirányelvnek, hiszen a VKI a vízpolitika teljes egészét fogja keretbe. Ennek a fejezetnek a célja, hogy bemutassa a Balaton részvízgyűjtőire vonatkozóan:

- a szamba vett emberi terheléseket,
- az emberi tevékenységek közvetlen hatását a vizekre, és
- meghatározza a „jelentős” terheléseket, azaz végeredményben a feladat - az állapotértékelés figyelembe vételével - a jelentős vízgazdálkodási kérdések lehatárolása. Az alkalmazott módszer a DPSIR modell, amelyet a 3. számú „Terhelések és Hatások” című Közös Végrehajtási Stratégiai Útmutató 22 ír le részletesen (IMPRESS). Jelentősnek tekintjük azokat a terheléseket, amelyek meghaladják valamely környezetvédelmi jogszabályban megadott küszöbértéket, vagy a víztestek, védett területek állapotára, olyan jelentős negatív hatással van, hogy a jó állapot elérése nem lehetséges, vagy kockázatos.

3.1 Vizek fiziko-kémiai elváltozások okozó terhelések

A terhelések egy nagy csoportját képezik a települési, ipari és mezőgazdasági tevékenységből származó, pontszerű és/vagy diffúz eredetű a felszíni és felszín alatti vizekbe jutó szennyezőanyag bevezetések. Az ezek feltárására irányuló hatáselemzés olyan vízgyűjtő szintű modellalkalmazásokat kíván meg, melyben képesek vagyunk a szennyezőanyagok és azokat közvetítő folyamatokat leírni (felszín és felszín alatti lefolyási pályák, a vízgyűjtő összegylekezési folyamata, oldott- és partikulált anyag transzport) és a szennyezés útját a forrásoktól a végös befogadóig nyomon követni.

A víztestek közvetlen szennyvízbevezetéssel összefüggő tápanyag terhelésének és szerves anyag forgalmának, valamint az eróziós okokra visszavezethető talajvesztésnek a meghatározása, vízminőségi okok miatt, az EU hasonló vízgálasztában is központi szerepet játszik. A jelentős

terhelések meghatározásához több módszer alkalmazására került sor. A terhelés-hatás elemzés módszere alapvetően három két épül:

- A felszíni vízválasztó topológiáját figyelembe vevő vízminőségi modell, melyben a mederbe belépő terhelések levonulása és ezzel egyidejűleg a vízminőség változása lebomlásra egyenletekkel közelítve számítható (gyakorlatilag az USA-EPA QUAL modell családban használt megközelítés);
- Valamint az Európa szerte elfogadott a MONERIS modell metodikája, melyet víztest vízgyűjtő szinten alkalmazva a területre jellemző természeti és antropogén tényezők ismeretében a nitrogén és foszfor emissziókat eredménye;

A módszertani leírást és a tesztelés eredményeit az OVGT 3-1 háttéranyag tartalmazza.

3.1.1 Pontszerű szennyezőforrások

Pontszerű szennyezőforrás kisebb kiterjedésű, lehatárolható helyen található, adott tevékenységből származó szennyezőanyag kibocsátást értünk.

A VKI II. melléklete szerint a felszín, illetve a felszín alatti víztestet valósznúleg elérő azon jelentős pontszerű antropogén terheléseket szükséges számítani, amelyek települési, ipari, mezőgazdasági és más létesítményekből, illetve tevékenységekből származnak, különös tekintettel a települési szennyezés kezeléséről szóló 91/271/EKG és az ipari kibocsátásokról (környezetszennyezés integrált megelőzése és csökkentése) szóló 2010/75/EU irányelvekre, valamint a 2006/11/KE irányelvre a Közösség vízi környezetébe bocsátott egyes veszélyes anyagok által okozott szennyezéséről.

3.1.1.1 Települési szennyezőforrások

Települési szennyvíz

A települési szennyvízből származó szennyezőanyag-tartalom nemzetközileg elfogadott mértékrendszerét a *lakosegyenérték* (LE). 1 LE azt a szennyvízben lévő, szerves, biológiaiag lebontható szennyezőanyag-mennyiséget jelenti, amelynek ötnapos biokémiai oxigén igénye 60 g BOI₅/nap.

A vízgyűjtő-gazdálkodási tervezéshez a települési szennyvízből származó emberi terhelés számbavétele céljából a 2010-2012 évre vonatkozó adatok kerültek feldolgozásra. A részletes műszaki adatok a 3-1 és 3-2 melléklet táblázataiban találhatók.

23 A Tanács irányelve (1991. május 21.) a települési szennyvíz kezeléséről (91/271/EGK)
A nem közművel összegyűjtött háztartási szennyvíz mennyiségére vonatkozóan csak becslések állnak rendelkezésre. A számítások alapja a csatornára rákötött és az összes lakás közötti különbség. A pontszerű szennyezőforrások számbavételekor kizárólag a szennyvizestelepekre szippantó kocsival beszállított mennyiségek kerülnek figyelmeztetésre, a települések területén zárt tárolóban, vagy szikkasztóban, illetve a mezőgazdasági területen elhelyezett szennyvízzel a diffúz szennyzőanyag-terhelés becslésekor számolnak.

A városi csapadékvíz kibocsátásokra vonatkozóan sem áll rendelkezésre nyilvántartás. Általánosságban megállapítható, hogy a csapadékvíz bevezetésekből kapcsolatos emberi hatás növekszik, mivel a belterületek, illetve leburbolt területek aránya is emelkedik. A városi (települési) csapadékvíz terhelést a lefolyás jelentős megőrzelése, valamint a csapadékvízzel bemosott szennyezőanyagok okozzák. Egyes kibocsátási pontokon végzett vizsgálatok alapján a városi csapadékvíz jelentős mennyiségű hordaléko, oltó, sót és a levegőből kiülepedett szennyezőanyagokat (pl. nehézfémeket) tartalmaz. Külön problémát jelent, ha a csapadékvíz heves zápor alkalmával a közcsatornába kerül, mivel a szennyvizestelep túlterhelése nem megfelelő tisztítást, végeredményben a befogadó balesetszerű szennyezését okozza.

A keletkező kommunális szennyvizeket biológiai (és esetenként kiegészítő kémiai) tisztítás után vezetik a vízfolyásokba, ritkábban állóvizekre, illetve talajra helyezik ki (nyárba, vagy öntözés). A csatornahálózaton összegyűjtött szennyvizek tisztítás után általában felszíni vízbe kerülnek. A tisztított szennyvizek biológiai bontható szervesanyagot, növényi tápanyagokat és kisebb mennyiségben előforduló egyéb anyagokat (nehezen bontható szerves vegyületeket, sókat, fémekeket, esetenként toxisztikus vagy hormonháztartást befolyásoló anyagok) is tartalmaznak, továbbá hozzájárulnak a hő terheléséhez is. A vízi ökoszisztémák ezeket az anyagokat általában a terhelés nagyságától és a befogadó vízhozama által biztosított hígulás mértékétől függően képesek tolerálni.

A Balaton vízgyűjtőn 2012. év végén a közcsatornán elvezetett szennyvizeknek 99,8 %-át megtisztították, ebből 0,6 %-ot csak mechanikai úton, 97,4 %-ot mechanikai és biológiai fokozattal. Hazánkban 27 db olyan települési szennyvízkibocsátás van, amely Duna vízgyűjtőkerület szinten is jelentős, illetve Európai Szennyzőanyag-kibocsátási és -szállítási Nyilvántartás (PRTR) köteles telephely, mivel a terhelés, vagy a kapacitás meghaladja a 100.000 lakosegyenértékét. A Balaton vízgyűjtőn egy ilyen szennyvíztisztító telep van, Zalaegerszeg településen.
A kommunális szennyvízkibocsátásokra vonatkozó emissziós adatok több forrásból is rendelkezésre állnak, ez magában rejtí a párhuzamosságból származó ellentmondásokat. A statisztikai célú közmű nyilvántartási adatbázis, az OSAP 1376 statisztikai adatszolgáltatásból feltöltött Települési Szennyvízelvezetési Információs Rendszer, azaz a TESZIR, melynek 2012 évre vonatkozó adatait a 3-2 melléklet mutatja be. A TESZIR tartalmazza a település részletek becsült terhelési adatait, a csatornázási rendszerek (szennyvízelvezetési agglomerációk) és a kommunális szennyvíztisztító telepek adatait (üzemeltető, a nyers és tisztított (kibocsátott) szennyvíz mennyiségét, a nyers és tisztított (kibocsátott) szennyvíz koncentrációkat, a telepek kapacitását, valamint tájékozódást terhelések az információkat a technológiáról és a kibocsátásról (tisztított szennyvízből származó terhelés, nem csatornázott településekről, településrészektől származó diffúz terhelés).

A kommunális szennyvizekből származó szerves és tápanyagterhelés

A szennyvízkibocsátásokat a befogadó víztestek alapján adatbázisba rendezték. Ha az elsődleges befogadó nem kijelölt víztest, a legközelebbi felszíni víztestet tekintették befogadónak, talajban történő elhelyezésnél pedig a felszín alatti (sejtkejűPORózusz, hegyvidéki vagy karszt) víztestet. Az adatbázis tartalmazza a telep kapacitását, a jelenlegi terhelést (lakosegyenértékben és vízmennyiségben kifejezve), valamint az éves szennyezőanyag kibocsátásokat (BOI, KOI, összes N, összes P, só, lebegőanyag).

A kibocsátók elhelyezkedése a 3-1 térképmellékletben látható. A Balaton részvízgyűjtőn az átlagos szennyezőanyag terheléseket a 3-1. táblázat tartalmazza.

3-1. táblázat: Felszíni vizek közvetlen, kommunális szennyvízbevetésekből származó átlagos szennyezőanyag terhelése a Balaton részvízgyűjtőn (2010-2012)

<table>
<thead>
<tr>
<th>Részvízgyűjtő név</th>
<th>Kibocsátott szennyvíz (millió m³/év)</th>
<th>Átlagos éves kibocsátás (tonna/év)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BOI</td>
<td>KOI</td>
</tr>
<tr>
<td>Balaton</td>
<td>15</td>
<td>133</td>
</tr>
<tr>
<td>Ország összes</td>
<td>523</td>
<td>10085</td>
</tr>
</tbody>
</table>

A tápanyag és szeerves anyag mutatók alapján jelenleg is a települési szennyvízbevetések okozzák legnagyobb arányban a felszíni vizek közvetlen pontoszerű terhelését, annak ellenére, hogy a tisztított szennyvízzel kibocsátott nitrogén és foszfor mennyisége 2012-re jelentősen csökkent, köszönhetően a tisztítási hatékonyság növekedésének (lásd 3-2. táblázat).

A szennyvíztisztító telepek hatékonyságát a nitrogén (továbbiakban: N) és foszfor (továbbiakban: P) eltávolítás (tápanyageltávolítás) vizsgálata alapján értékelik. 2012. decemberi 31-i állapot
szerinti eltávolítási hatásfokok országosan a N esetében: 73,1 %, míg a P esetében: 74,4 %, amely eltávolítási hatásfok már közelít a települési szennyvíz irányelvben előírt 75%-hoz.

3-2. táblázat: Felszíni vizek közvetlen, kommunális szennyvízbevetésekből származó szennyezőanyag terhelésének változása 2007 és 2012 között a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Ország összes</th>
<th>Kibocsátott szennyvíz (millió m³/év)</th>
<th>Éves kibocsátás (tonna/év)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BOI</td>
<td>KOI</td>
</tr>
<tr>
<td>2007</td>
<td>16</td>
<td>220</td>
</tr>
<tr>
<td>2012</td>
<td>12</td>
<td>91</td>
</tr>
<tr>
<td>Trend</td>
<td>-4,2</td>
<td>-129</td>
</tr>
</tbody>
</table>

További finomításra a diffúz terhelések együtt kezelésével kerül sor (OVGT 3-1 háttéranyag).

A szennyvíz bevezetések befogadóra gyakorolt hatáselemzéséhez az Országos Vízgyűjtő-gazdálkodási Terv 8.3.2.1 fejezetében bemutatott QUAL-2 típusú vízminőségű modellt futtatták le, mely során a pontforrásokból származó terhelés eredményeként előállít koncentráció növekedést számították ki. Egy szennyvízbevezetés akkor bizonyul jelentősnek, ha a befogadóra előírt célkitűzés teljesítését megakadályozza Ehhez két feltétel együttes teljesülését vizsgáltak:

1) A víztestben a pontszerű terhelésekből a modellel számított koncentráció növekmény meghaladja azt az értéket, ami a jó állapot eléréséig az emberi hatásokból megengedhető. Ezt a növekményt a víztípus referencia állapotára jellemző koncentráció (feltételezett természetes háttér terhelés) és a jó/mérsékelt osztályhatár közti különbségként határozták meg.

2) A modellben rejlő bizonytalanságok hatásának csökkentésére az 1. pontban meghatározott feltétel teljesülése mellett a terhelés jelentőségének megállapításához az állapotértékelés eredményét is figyelembe vették. A terhelés csak akkor bizonyult jelentősnek, ha ezt az elsődleges befogadó állapotértékelés is visszaigazolja (a fizikai és kémiai minősítés és a biológiai minősítő elemek közül szerves- és tápanyagterhelést mutató fitobenton eredményét figyelembe véve az állapot mérsékelt vagy annál alcsonyabb osztály).

Az elemzés külön történt a 4 komponensre, majd azokat összesítve – ahol valamely komponensre jelentősnek bizonyult, akkor a terhelést jelentősnek ítéle – történt a végző besorolás. A szennyvízbevezetések vízminőségi hatásait tekintve a legjobb a helyzet a Balaton vízgyűjtőn, ahol csak 2 szennyvízbevezetés jelentős, míg országosan minden ötödik telep. A jelentős szennyvízbevezetéseket a 3-1. ábra szemléltei.

Az elemzés külön történt a 4 komponensre, majd azokat összesítve – ahol valamely komponensre jelentősnek bizonyult, akkor a terhelést jelentősnek ítéle – történt a végző besorolás. A szennyvízbevezetések vízminőségi hatásait tekintve a legjobb a helyzet a Balaton vízgyűjtőn, ahol csak 2 szennyvízbevezetés jelentős, míg országosan minden ötödik telep. A jelentős szennyvízbevezetéseket a 3-1. ábra szemléltei.

A Balaton vízminőségének javítására már több évtizeddel ezelőtt elkezdődött a szennyvízterhelések csökkentése, ezért a több település szennyvízét kivezetik (lásd a következő ábrát) a vízgyűjtőről és így már nem okozhatják a Balaton eutrofizációját (a terhelés másik, ökológiai szempontból kevésbé jelentős vízgyűjtőn történik).
3. fejezet Emberi tevékenységből eredő terhelések és hatások

3-1. ábra: Települési szennyvíztisztítók kibocsátásának vízminőségi hatásai a Balaton részvízgyűjtőn

3-2. ábra: A Balaton közvetlen vízgyűjtő szennyvízrendszer

3-3. táblázat: A befogadóra gyakorolt hatás szempontjából jelentős terhelést okozó TESZIR-ben nyilvántartott kommunális települési szennyvíztisztítók száma

<table>
<thead>
<tr>
<th>Részvízgyűjtő név</th>
<th>Kibocsátók összesen 2007 (db)</th>
<th>Ebből jelentősnek minősített (db)</th>
<th>Kibocsátók összesen 2010-2012 (db)</th>
<th>Ebből jelentősnek minősített (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balaton</td>
<td>30</td>
<td>10 (33 %)</td>
<td>33</td>
<td>2 (6%)</td>
</tr>
</tbody>
</table>
A települési szennyvíz irányelv, mint VKI 11.3 (a) pontjának megfelelő alapintézkedés, fokozatos teljesítésével a csatornahálózat fejesztésével a felszín alatti vizek terhelése csökken. A leendő szennyvíztisztító telepek, mint új pontforrások, a felszín alatti vizek terhelését várhatóan növelik. Hasonló következménye lesz a meglévő telepek kapacitás bővítésének is, ha az nem jár együtt technológiai fejlesztéssel, a tisztítási hatásfok emelésével. A 2015-ig csatornázandó települések többségének szennyvízét meglévő szennyvíz agglomerációkhoz csatlakozva, a jelenleg már üzemelő telepekre fogják rávezetni. A vizek összes terhelését tekintve várhatóan a terhelés növekményt ellensúlyozza a jelenleg működő telepek korszerűsítésével járó tisztítási hatásfok-javulás, azonban ezzel együtt a terhelések térben jelentősen átrendeződnnek, a kisebb vízhozamú befogadók esetében a bővítés következményeként előálló terhelés növekedés kedvezőtlen hatásával kell számolni. A Balaton vízgyűjtőn 2015 után már csak kistelepülések (terhelés kisebb mint 2000 LE) szennyvízelhelyezését kell megoldani, amelyre a Balatoni Kistelepülések Szennyvízkezelési Programja ad keretet. Az üdülőkörzet 44 kistelepülésének több mint felénél, már kiépült a szennyvízrendszer, vagy folyamatban van a kiépítés, 2015 után 20 településen kell megoldást találni.

3.1.1.2 Ipari szennyezőforrások

Ipari szennyvíz

A közműves ivóvízellátásról és a közműves szennyvízelvezetésről szóló 38/1995. (IV. 5.) Korm. rendelet szerint ipari szennyvíz minden olyan szennyvíz, amelyet valamely ipari vagy kereskedelmi tevékenység folytatására szolgáló helyiségből bocsátanak ki, és ami nem háztartási szennyvíz vagy csapadékvíz és nem veszélyes hulladék, míg a háztartási szennyvíz emberi tartózkodás céljára szolgáló területről vagy szolgáltatásból származó szennyvíz, amely az emberi anyagcseréből és háztartási tevékenységből származik és nem minősül veszélyes hulladékknak.

A közvetlen felszíni vizekbe történő ipari és egyéb kibocsátások a "hagyományos" szennyező anyagok esetében ismertek, az emissziók jellemzéséhez a kibocsátók bevallása (VÉL – Vízminőség-védelmi éves jelentési - lapok) alapján a vízügyi hatóság adatbázisának, valamint az alapvetően tájékoztató jellegű információkat. A részletes 2010-2012-re vonatkozó kibocsátási adatokat a 3-1. melléklet „ipari és egyéb szennyvízterhelés" lapja tartalmazza.

A településeken található ipari üzemek leggyakrabban a közcsatornán keresztül a település kommunális szennyvíztisztítóra vezetik – szükség esetén előtisztítás és, vagy tározás után – a keletkező szennyvizekeket. A közvetett (közcsatornába) kibocsátókról nincsenek megbízható adatok, a települési szennyvíztisztító telepénél már nem lehet szétválasztani a szennyező anyagok kommunális, illetve ipari részét.

24 A Tanács irányelve (1991. május 21.) a települési szennyvíz kezeléséről (91/271/EGK)
Az E-PRTR üzemekről és kibocsátásukról minden évben országos jelentés készül. (Az ipari üzemekből származó kibocsátásokra vonatkozó jelentéstétel és az adatok nyilvánosságra hozása, sok Uniói tagállamban már régóta bevett eljárás, mivel ez hatékony megoldás a környezetszennyezés csökkentésére.) A hatóságokhoz megküldött adatok nyilvánosak: az http://prtr.ec.europa.eu/ honlapon találhatók meg, valamint ugyanitt elérhetőek a megküldött éves jelentések adatai.

A PRTR nyilvántartás adatait a 3-3 melléklet tartalmazza, míg a telepek elhelyezkedését a 3-4 térképmelléklet mutatja be.

Balaton vízgyűjtőén 16 db PRTR telephelyet tartanak nyilván. A 3-4. táblázat a PRTR rendeletben meghatározott küszöbérték feletti, így jelentős kibocsátónak számító ipari üzemek darabszámát 2010 és 2012 között a PRTR nyilvántartás szerinti csoportosításban mutatja be, a PRTR telephelyek tevékenység szerinti megoszlását szintén a 3-4. táblázat szemlélteti.

Az EKHE köteles cégek a talajba, a levegőbe és a vizekbe (közvetlenül és közvetetten) – az összmennyiséget tekintve – rendeletben meghatározott küszöbérték feletti mennyiségben bocsátanak ki szennyező anyagokat. A telepek többsége a levegőszennyezés elleni küzdelem érdekében került az EKHE létesítmények listájára. Ezen üzemek szerepe a vizek állapotában kevésbé jelentős, hatásuk közvetetten jelentkezik, ennek megfelelően például a diffúz nitrát terhelések számításakor a levegőből kiülepedő nitrogén terhelés is figyelembevételre kerül. A csak légyszennyező anyagokat kibocsátó üzemek figyelmen kívül hagyása azért sem lehetséges, mert a technológia során felhasznált nyersanyagok odaszállítása és tárolása is veszélyekkel járhat. Ezekkel az üzemekkel a balesetszerű szennyezések és a szennyezett területek esetében is számolni kell. Továbbiakban azonban csak a vízbe közvetlenül és/vagy a földtani közegbe (közvetetten a vízbe) kibocsátó ipari tevékenységek és hatások kerülnek bemutatásra.

3-4. táblázat: Jelentős ipari üzemek száma tevékenységenként a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Tevékenység</th>
<th>Balaton 2007</th>
<th>2010-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiaágazsúl</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Fémek termelése és feldolgozása</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ásványipar</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Hulladék- és szennyvízkezelés</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Végypar</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Papír- és faipar</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Élelmiszeripar</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Összesen</td>
<td>30</td>
<td>9</td>
</tr>
</tbody>
</table>

Az értékelés összesített eredményét, azaz a főbb szennyező anyagok emisszióját a 3-5. táblázat mutatja be ágazatok szerinti bontásban. Látható, hogy a terhelésben döntően a kommunális szennyvíztisztító telepek dominálnak. Ez egyúttal azt is jelzi, hogy a felszíni vizek terhelésének alakulása nagyobb mértékben függ a települési szennyvízkezelés működésétől, mint a közvetlen ipari kibocsátóktól. Természetesen a települési szennyvizek tartalmazzák a közvetett ipari kibocsátók szennyező anyagait is.
3-5. táblázat: Felszíni vizek közvetlen ipari szennyvíz terhelése ágazatonként a Balaton részvízgyűjtőn (2010-2012)

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>Szennyvíz millió m³/év</th>
<th>KOI tonna/év</th>
<th>BOI tonna/év</th>
<th>Nitrogén tonna/év</th>
<th>Foszfor tonna/év</th>
<th>Bevezetések száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termálvíz, fürdővíz</td>
<td>1,7</td>
<td>5,4</td>
<td>0,6</td>
<td>n.a.</td>
<td>0,9</td>
<td>16</td>
</tr>
<tr>
<td>Szolgáltatóipar</td>
<td>1,5</td>
<td>24,2</td>
<td>0,6</td>
<td>n.a.</td>
<td>n.a.</td>
<td>6</td>
</tr>
<tr>
<td>Mezőgazdasági</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Köölaj-feldolgozás</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Kohászat, fémfeldolgozás</td>
<td>0,0</td>
<td>0,2</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1</td>
</tr>
<tr>
<td>Hulladékkezelés</td>
<td>0,0</td>
<td>1,8</td>
<td>0,4</td>
<td>n.a.</td>
<td>0,001</td>
<td>1</td>
</tr>
<tr>
<td>Halászat</td>
<td>3,1</td>
<td>209,2</td>
<td>40,1</td>
<td>17,0</td>
<td>0,9</td>
<td>5</td>
</tr>
<tr>
<td>Energiaipar</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Élelmiszeripar</td>
<td>0,028</td>
<td>0,1</td>
<td>0,1</td>
<td>n.a.</td>
<td>0,003</td>
<td>2</td>
</tr>
<tr>
<td>Egyéb feldolgozóipar</td>
<td>0,005</td>
<td>0,5</td>
<td>0,02</td>
<td>0,4</td>
<td>0,01</td>
<td>1</td>
</tr>
<tr>
<td>Bányászat</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Összes</td>
<td>6,3</td>
<td>241</td>
<td>42</td>
<td>17</td>
<td>1,8</td>
<td>32</td>
</tr>
<tr>
<td>Ipari és kommununális terhelés aránya (%)</td>
<td>30%</td>
<td>34%</td>
<td>24%</td>
<td>7%</td>
<td>16%</td>
<td>47%</td>
</tr>
</tbody>
</table>

Mennyiségi szempontból az ipari és egyéb kibocsátásokból a halászati szektor aránya a legmagasabb, mely szennyvíz mennyiségéből közel 50%-os részesedéssel bír, míg a kibocsátott szennyezőanyag mennyisége átlagosan 30%-át teszi ki. Részvízgyűjtő szinten további jelentős mennyiségű szennyvíz és foszfor kibocsátás jellemzi a termálvíz bevezetéseket, amely általában egyéb szennyező anyagokat nem tartalmaznak, viszont ezek a felszíni vízek hő terhelését okozzák. A szeerves- és tápanyag-terhelésben a közvetlen élővízbe vezetett ipari szennyvizek aránya elhanyagolható. Az ipari kibocsátások időbeni alakulását a 3-6. táblázat mutatja be. A rendelkezésre álló adatok alapján a 2007-es állapot ismerete és átlagosan is jelentős termálvíz és energiaterhelés jellemző.

3-6. táblázat: Felszíni vizek közvetlen, ipari szennyvízbevetésekből származó szennyezőanyag terhelésének változása 2007 és 2010-2012 között a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Év</th>
<th>Szennyvíz millió m³/év</th>
<th>KOI tonna/év</th>
<th>BOI tonna/év</th>
<th>Nitrogén tonna/év</th>
<th>Foszfor tonna/év</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2,5</td>
<td>47</td>
<td>5,5</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>2010-2012</td>
<td>6,3</td>
<td>241</td>
<td>42</td>
<td>17,4</td>
<td>1,8</td>
</tr>
<tr>
<td>Trend</td>
<td>3,9</td>
<td>194</td>
<td>36</td>
<td>17,0</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Az ipari ágazatok tekintetében a halászati és termálvíz bevezetéseken kívül nem tapasztalható növekvő trend a második vízgyűjtő-gazdálkodási terv eredményei szerint.

Használt termálvíz

Hazánkban ágazati szempontból is kiemelt jelentősége van a termálvizek különböző célú (rekreációs, mezőgazdasági, ipari) felhasználásának.

A használt termálvízét élő vízfolyásokba, jobb esetben tárózóba engedik, de az utóbbiak leeresztésének is a vegős állomása valamilyen felszíni víz. A használt termálvíz beeresztése a felszíni vízfolyásba a termálvíznek a felszíni víztől esetként jelentősen eltérő magas sötétalma, ion összetétele és hőmérséklete, és ezzel összefüggésben a befogadó ökoszisztémájának
átalakulása miatt okozhat gondot (faji összetétel változása, idegen, esetleg invazív fajok elterjedése). További problémát jelenthet az, hogy a hévíz kutyák egy részében jelentős a fenol (és származékaival) valamint a PAH vegyületek előfordulása. A gyógyászati és termálfürdői hasznosításból adódóan a bakteriális szennyezettség is probléma forrása lehet. A fenti 3-5. táblázat a termálvíz kibocsátásra vonatkozóan is tartalmazza a főbb szennyező anyagok emissziját.

Termálvíz, fürdővíz bevezetés a Balaton vízgyűjtő területén 16 helyen történik, s ebből 8 Hévízen, azonban itt kivételesen ez természetes, ezért nem tekinthető terhelésnek. A kibocsátások közül 2 zalogalosi telephely kapott jelentős minősítést. A terhelés-hatás elemzés eredményét a 3-1 melléklet 2. munkalapjának adatai tartalmazzák.

3.1.1.3 Mezőgazdasági szennyezőforrások

A mezőgazdasági pontszerű szennyezőforrások közé soroljuk az állattartó telepet, az akvakultúrát (halászatot), hulladékgazdálkodási létesítményt, élelmiszeripari üzemet és a mezőgazdasági alapanyagot előállító, raktározó vegyipari üzemet (pl. vegyipari létesítmények foszfor-, nitrogén- vagy káliumalapú műtrágyák előállítása) tekintjük. Utóbbi két teleptípus az ipari szennyezőforrásoknál már számba vettük ezért ennek a fejezetnek nem tárgyai.

Állattartó telepek

A felszín alatti vizek és esetenként a felszíni vizek szempontjából jelentős pontszerű szennyező források lehetnek az intenzív tartású, nagy létszámú állattartó telepek 25 amennyiben a trágyakezelés, tárolás nem felel meg a Helyes Mezőgazdasági Gyakorlat 26 előírásainak.

A szervestrágya 27 tárolás, kezelés és hasznosítás megfelelő megoldása a vizek nitrogén szennyezésénének megakadályozása céljából lényeges, hiszen a trágya bizonyos szempontból hulladék, de sokkal inkább a termőterületek tápanyag-gazdálkodását segítő, hasznos melléktermék. A nem megfelelően szigetelt, vagy méretezett trágyatároló elsősorban a felszín alatti vizeket szennyezzi el lokálisan igen magas – akár a nitrát direktívában meghatározott 50 mg/l tízszere - nitrát-koncentrációit eredményezve a trágyatároló környezetében. Az is előfordulhat, hogy a tárolás helyéről kimosott szervesstrágya felszínű vizben okoz károkat (az ammónia tartalom miatt fellépő oxigénhiányos állapot eredménye halpírás, rosszabb esetben halpusztulás lehet). Az állattenyésztés hozzájárul az üvegházi hatású gázok kibocsátásához is, amelyből az ammónia oxidálódva a többi nitrogén vegyülettel együtt kiülepedéssel diffúz terhelésként jelenik meg, amellyel a 3.2 fejezetben foglalkozunk.

A keletkező szervesstrágya mennyisége alapvetően az állatlétszám alakulásától függ.

Az állattartó telepek által okozott szennyezés elsősorban azonban nem az állatok létszámától, hanem a trágyatárolás korszerűségétől függ. Ezért jelenik meg a megfelelő trágyatárolók kiépítése alapintézkedésként a Nitrát Irányelv teljesítményától függően. A trágyatárolás helyzetéről teljeskörű nyilvántartással nem rendelkezünk, azonban 2014-ben a Földművelésügyi Minisztérium megbízására a Nemzeti Agrárkutatási és Innovációs Központ (NAIK) felmérte a trágyatárolók

25 41/1997. (V. 28.) FM rendelet 1. számú függeléke szerint
26 59/2008. (IV. 29.) FVM rendelet vizek mezőgazdasági eredetű nitrátszennyezéssel szembeni védelméhez szükséges cselekvési program részletes szabályairól, valamint az adatszolgáltatás és nyilvántartás rendjéről
27 Szervesstrágya: az állatállomány által ürített trágya, illetve a trágya és az alom keveréke, feldolgozott formában is, ide tartozik különösen a hígtrágya, az istállótrágya.
magyarországi helyzetét. A NAiK által a trágyatárolók helyzetéről és lehetséges műszaki megoldásokról, azok költségeiről készített tanulmánya az OVT 3-2. háttéranyag tartalmazza, amely alapján az alábbi általános kép rajzolódik ki:

- A trágyatárolók kiépítettsége szinte telepmérettől függetlenül igen vegyes műszaki megoldásokat tartalmaz és számos helyen nem teljesíti a környezetvédelmi elvárásokat.
- A kisebb telepeken a műszaki előírásoknak megfelelő tároló kiépítése aránytalanul költséges.
- Hozzavétőlegesen (állatfajtától függően) 4 EUME potenciális jövedelemtermelő kapacitású üzemmér let felett tudná megfizetni a trágyatároló kiépítését a gazdálkodó a jelenlegi előírások mellett, vagy egyszerűsíteni kell a műszaki követelményeket.

Az állattartó telepek korszerűsítéséhez nyújtandó UMVP támogatás keretében az állattartók komplex infrastrukturális támogatást vehettek igénybe 2012-ben trágyakezelés és tárolás, állati férőhelyek kialakítása, jó minőségű takarmány előállítása és a telepi állategészségügyi helyzet javítása céljából.

A fenti általános megállapítások a Balaton részvízgyűjtőre is alkalmazhatók. A NAiK felmérésében 365 trágyatárolót 230 ezer m³ kapacitással vizsgáltak a részvízgyűjtőn, amelyből 15% hígtrágya, a többi istállótrágya tároló. Szigetlet és szigeteletlen, talajvízzel érintkező és nem érintkező tárolókat egyaránt találtak. A nagyobb tárolók (60 ezer m³) műszaki fólia szigeteléssel rendelkeznek a Balaton részvízgyűjtőn, valamint a tárolók egyharmada betonból (120 ezer m³) készült, másik egyharmada döngölt agyag, vagy föld aljzatú. Az állattartó telepek kiépített kapacitását a 3-2 térképmelléklet mutatja be.

Halászat

A halgazdálkodást a Víz Keretirányelv kétféleképpen kezeli, egyrészt, mint terhelést, ezért előírja a halgazdálkodási területek számbavételét (II. melléklet 1.4 pontja utolsó bekezdése), másrészt, mint védendő értéket, így lehetőséget biztosít a gazdasági szempontból fontos vízi állatfajok védelmére területek kijelölésére (IV. melléklet 1. 2 pont).

E kettősség a magyarországi helyzetre is jellemző, hiszen a környezetvédelmi szabályozásban (27/2005 (XII. 6.) KvVM rendelet29) a halastavak, mint szennyezőanyag kibocsátók jelennek meg. Ugyanakkor a 2013. évi CII. törvény a halgazdálkodásról és a hal védelméről (továbbiakban: HHT) szól, azzal az elv, hogy alapvető fejezet, hogy a halastavak kerüljenek a környezetvédelmi szabályozás alá. A halastavak jelentős szerepet játszanak a vízi élőhelyekként, mivel a tavak egy része természetes mocsár, vagy időszaki vízállás helyén létesült, illetve egyes tórendszerek élővilágban elterjedt és megközelítően a természetes mocsarak befolyását. A halgazdálkodás jelentős hatással van a vízek állapotára, ezért a természetes vízök ökológiai állapotának elérésére csak a halászat és a horgászat szempontjainak érvényesülése mellett, az érintettek aktív részvételével valósítható meg.

29 27/2005. (XII. 6.) KvVM rendelet a használt és szennyvíz kibocsátásának ellenőrzésére vonatkozó részletes szabályokról
A halgazdálkodást a második VGT-ben, mint vízhasználat tárgyaljuk, ezért a tógazdaságok vízkivételeit, valamint a tározós halastavaknál felhasznált vizek mennyiségét a felszíni vízkivételek (3.4.1 fejezet) között vesszük számba, valamint a tározók által okozott hidromorfológiai változtatást pedig a 3.3.1 fejezetben. A halastavakból leeresztett vizek minőségével kapcsolatos terhelést az előző 3.1.1.2 fejezetben már bemutattuk. A kibocsátási pontok a 3-2 térképmellékleten láthatóak.

A Halászati Operatív Program keretében közel 8 milliárd Ft támogatást kapott 50 pályázó, amellyel 17 203 ha-on 439 gazdálkodási egységben történt halgazdálkodási fejlesztés. Ebből 285 millió forint támogatás a Balaton részvízgyűjtőre jutott 6 gazdálkodónak.

A hazai haltermelés több mint kilencven százalékban (területét tekintve) a tógazdasági termelést jelenti. Többségében pontyot, busát, amurt és néhány ragadozó halfajt (harcsa, süllő és csuka) állítanak elő. A típustól idegen, esetleg invazív fajok betelepítése a VKI alapján közvetlen terhelést okoz, aminek hatására megváltozik az ökoszisztéma összetétele. Olyan invazív halfajok is előfordulnak, amelyek a haltermelésben is károkat okoznak pl. az ezüstkárász (Carassius auratus), a törpeharcsa (Ameluirus spp.) és kínai razbóra (Pseudorasbora parva). Tekintettel arra, hogy halak felmérése a VKI monitoringban még nem történt meg (folyamatban van), ezért pontos állapotértékelés még nem adható, de jelenlegi isméréteink alapján is feltételezhető, hogy a tájidegen fajok részaránya jelentős természetes vizeinkben. Ugyanakkor a tógazdasági haltermelés erős szerepet tölt be a természetes vizek halasításához szükséges tenyészanyag (közöttük védett és veszélyeztetett fajok) előállításában is.

A részvízgyűjtőn a Balatonban és a déli vízgyűjtőn található halastavakban van halászati tevékenység. A Balatonon jellemzően extenzív, sőt az utóbbi években csak ökológiai célú halaszt történik, míg a halastavakban intenzív haltenyésztés folyik. Ezek a halastavak szolgálják ki a Balaton természetes halfajokkal történő utánpótlását is. Ezek az állóvizek leeresztésükkor közvetetten terhelhetik a Balatont. A Balatoni Halgazdálkodási Nonprofit Zrt. feladata a tájidegen halfajok gyérítése a Balatonban, ezáltal a gazdasági célú halasztatot felváltotta az ökológiai értékek megőrzése.

A részvízgyűjtő területén a természeti adottságoknak köszönhetően számos mellékág, valamint jelentős kisvízfolyás található, melyek kiváló lehetőséget kínálnak a horgászoknak, azonban problémaként felmerül, hogy a horgászati célú haltelepítések következtében a természetes faunától eltérő fajok kerültek a felszínű vizekbe, így az őshonos halfajok életfeltételei romlanak. A Szévész melleti tőzegbánya tavak önálló víztesteket alkotnak. Jelentős halgazdálkodás még a Zala-Somogyi-határákon mellé telepített Varászlói halastó csoporton van, melyek szintén önálló víztestet alkotnak.
Ennek megfelelően a halastavak vízminőség szempontjából azért problémásak, mivel jellemzően magas tápanyag- és lebegőanyag tartalmú vizet bocsátanak ki, a kibocsátási adatokat a **3-1 melléklet** tartalmazza (ipari és egyéb szennyvízterhelés). A tógazdaságokból származó terhelés értékelése érdekében az adatokat összevetettük a kommunális és az ipari szennyvízhibridcsatásokkal (**3.1.1.2 fejezet**). A halászati ágazat táp-, lebegő- és szervesanyag terhelése összetettében nem jelentős (harmadik a település és az ipari után), viszont a víztestenkénti vizsgálatnál már problémák jelentkeznek. A legtöbb tógazdaság kis vízfolyást, vagy kisessé vált csatornáit elterhel, ezért a középvízi vízhozamra számlált húgulási arány mind a dombvidéki völgyzárógátas, mind a síkvidéki tavaknál alacsony.

A haltermelők és a VKI célkitűzései a vízminőség tekintetében közösek, mivel a halak közérzetének biztosításához jó minőségű, magas oxigén telítettségű, szennyezőanyagoktól mentes, kevés anyagcyklet tartalmazó víz szükséges. A halak tartási körülményei gyakran nem felelnek meg a halak természetes viselkedési igényeinek, mivel esetleg már a bevezetett víz minősége nem megfelelő. A probléma mindenféleben kivizsgálást igényel, bár az okok általában ismertek (belvíz eredendő vízminősége, felvizen bevezetett szennyvíz és diffúz szennyező hatások), de rendszeres monitoring hiányában a mértéke ismeretlen.

3.1.2 Diffúz szennyezőforrások

3.1.2.1 Diffúz nitrogén és foszfor terhelés

A nem pontszerű, **diffúz szennyezések** rendszerint nagy területről érkeznek kis koncentrációban, a kibocsátások térbeli elhelyezkedése elszórt és pontosan nem ismert. Az emissziók valamilyen intenzív területhasználat (mezőgazdaság, település, erdőgazdálkodás) következményei. Bár az egyes (lokális) kibocsátások mértéke önmagában kicsi, hatásuk a vizekre összegződve jelentkezik. A szennyezés a forrásoktól valamilyen közvetítő közegen keresztül jut el a vizekig, például a talajon, a háromfázisú zónán keresztül a talajvízig, a befogadóba történő belépés vonal, vagy felület mentén történik. A terjedésben (felszíni és felszín alatti transzport) meghatározó szerepe van a hidrológiai folyamatoknak.

A szennyezés érkezhet felszíni és felszín alatti lefolyással (oldott állapotban vagy szilárd formában (talajhoz/hordalékhoz kötőtt); továbbá a légkör száraz/kedvező kihullással. A források és a pontszerű-diffúz jelleg szerinti csoportosítás némileg átfedésben van egymással. Például a szennyezés érdektelen terhelés pontszerű, ha közvetlenül vagy a vízfolyások közvetítésével jut a tóba, vagy diffúz, ha a talajon és a talajvízen keresztül éri el a felszíni vízeken. A vízminőség és lefolyási jellemzők alapján elhatároljuk a forrásokat (**3.1.1.2 fejezet**).
A pontszerű és diffúz terhelések közötti eltérés nemcsak a szennyezés helyének és a terjedés útvonalának különbségéből, hanem azok időbeli változásából is adódik. A nem pontszerű terhelést – tekintve, hogy a terjedési folyamatokat alapvetően a hidrológiai tényezők határozzák meg – sztochasztikus változások jellemzik.

A bemutatott jellemzők a diffúz szennyezések meghatározását meglehetősen bonyolult problémává teszik. Tekintettel a terhelés útvonalak sokféleségére, a diffúz terhelés meghatározására a legalkalmasabb módszer egy emissziós modell használata, mely jól leírja és számszerűsíti a különböző útvonalak közt végbemenő folyamatokat és kölcsönhatásokat. Az Országos Vízgyűjtő-gazdálkodási Terv elkészítése során a MONERIS modellett használtuk fel a diffúz és pontszerű terhelések területi (víztest illetve nagyobb vízgyűjtő szinten) összegzésére. A modellleírás módszertanát az OVGT 3-1 háttéranyag tartalmazza, alábbiakban a Balaton részvízgyűjtőre vonatkozó eredményeket mutatjuk be.

Összes nitrogén terhelés

A víztestet érő nitrogén terhelés 1,87 kt/év volt az 2009-2012 időszakban, éves átlagban. Ha a terhelés útvonalakénti megoszlást tekintjük, elmondható, hogy összes nitrogén esetében a légkörű kiulepedés számít az elsősármú szennyezőnek, mely a teljes terhelés csaknem felét (44 %-át) adja (3-4. ábra). Jelentős terhelés származik a terjedési folyamatokból, illetve a pontszerű kibocsátásokból, melyek közül előbbi a talajvíz múltbeli diffúz nitrit-szennyezettségének (települési szennyvíz szikkasztás és mezőgazdasági forrásból), utóbbi legfőképp a szennyvíztisztítók kibocsátásának köszönhető.

3-4. ábra: Összes nitrogén terhelés megoszlása útvonalanként a Balaton részvízgyűjtőn

Összes foszfor terhelés

A terhelési útvonalaknál a nitrogénehez hasonlóan számottevő a légkörű kiulepedés mértéke, mely az összes terhelés 18%-át teszi ki. Az így fennmaradó hét terjedési útvonalból az vízgyűjtő területére összesen 131,1 t/év terhelés adódott a 4 év éves átlagában. Az eredmények alapján a Balaton részvízgyűjtőn a mezőgazdasági területek eróziója valamint a természetes erózió számít a legnagyobb terhelés forrásnak összesen 51 %-os részesedéssel (3-5. ábra). A részvízgyűjtőre számított talajveszteség (természetes erózió és mezőgazdasági terület eróziója miatt) térkép, amely döntően a diffúz foszforterhelés okozója a 3-6. ábrán látható.
3-5. ábra: Összes foszfor terhelés terhelési útvonalankénti megoszlása a teljes terhelés százalékában a Balaton részvízgyűjtőn

3-6. ábra: Talajveszteség (természetes erózió és mezőgazdasági terület eróziója miatt) térkép a Balaton részvízgyűjtőn - diffúz foszforterhelés okozója

3.1.2.2 Belvízelvezetés, meliorált területek

Az előző fejezetben bemutatott modelllezéssel a belvízzel előtött területek megfelelő szintű figyelembe vételehez a belvízelvezető hálózat és a meliorált területek, ezen belül a talajcsövezett területek részletesebb vízminőségi modellezési szempont – ismeretekre lenne szükség. A belvízelvezetés kedvezőtlen vízkészlet-gazdálkodási hatása mellett a vízminőségi hatásai miatt ökológiai szempontból is kedvezőtlen. Ezért a belvízrendszer jobb vízvisszatartáson alapuló átalakítása során, vagy általában a belvízelvezetés fejlesztésekor a vízminőségi szempontokat is figyelembe kell venni, nem csak a mennyiségieket. A Balaton közvetlen részvízgyűjtőn a berkek vizét csapolják meg a belvízelvezető rendszerek, amelyek szervesanyag tartalma rendszerint magas, ezért természetes lefolyáson túli megcsapolásuk kedvezőtlen a vízminőségre.
3.2 Veszélyes anyag szennyezés és az emisszió leltár

A Víz Keretirányelv célkitűzése a felszíni vizek elsőbbségi (kiemelten veszélyes) anyagok által történő szennyeződésének megszűntetése és fokozatos csökkentése, annak érdekében, hogy a veszélyes anyagokkal való szennyeződéseken ne akadályozzák meg a felszíni víztestekre megállapított jó állapot elérésének célkitűzését. E cél érdekében vízszennyezés elleni stratégiát határoz meg a VKI 16. cikkelyében.

A stratégia azokra a szennyezőanyagokra vagy szennyezőanyag csoportokra vonatkozik, amelyek jelentős kockázatot jelentenek a vízi környezetre vagy az ivóvíz kitermelésére használt vizeken keresztül az emberre. Az ilyen szennyezőanyagok esetében az intézkedések célja a bevezetések, a kibocsátások és a veszteségek fokozatos csökkentése, a 2. cikk (30) bekezdésében meghatározott, kiemelten veszélyes anyagok esetében pedig a bevezetések, a kibocsátások és a veszteségek megszüntetése vagy fokozatos kitűtése. A stratégia részét képei azon elsőbbségi anyagoknak a meghatározása, amelyek a vízi környezetre vagy azon keresztül uniós szinten jelentős kockázatot jelentenek. Az Európai Parlament és a Tanács 2006/11/EK Irányelve (2006. február 15.) a Közösség vízi környezetébe bocsátott egyes veszélyes anyagok által okozott szennyezésről szól, és két csoportot határoz meg: az I. csoportba tartozó anyagok kibocsátását meg kell szüntetni, a II. csoport esetében csökkenteni kell a szennyezést. VKI X. melléklete 33 anyagot vagy anyagcsoportot jelöl el elsőbbségi veszélyes anyagként, majd 2013.09.01-től 45 elemüre bővült a lista.

A környezetminőségi előírásokról szóló 2008/105/EK (EQS direktiva) európai parlamenti és tanáci irányelv a Víz Keretirányelvvel összhangban környezetminőségi előírásokat (EQS) és újabb eljárásokat állapít meg az elsőbbségi anyagok tekintetében. Az EQS direktiva célja az elsőbbségi anyagok által okozott szennyezés fokozatos csökkentése és az elsőbbségi veszélyes anyagok bevezetésének, kibocsátásának és veszteségének megszüntetése vagy fokozatos kivezetése.

Releváns veszélyes anyagok

A releváns szennyezőanyagokat többféle módszerrel is megkíséreljük meghatározni. Az első módszer a vizek veszélyes anyagokra kiterjedő monitoringján alapozik, azaz a felszíni vizek kémiai állapotértékelésén. A Balaton részvízgyűjtő esetében a veszélyes anyagok állapotértékelése alapján egyetlen víztest, a Sári-csatorna kapott nem elégséges minősítést kadmium miatt. További toxikus fém miatti minőségromlás is csak két vízfolyás víztest esetében volt tapasztalható (lásd 6-1 melléklet). A másik módszer az Állami Népegészségügyi és Tisztiorvosi Szolgálat Országszövetségi előírásokról szóló 82/176/EGK, a 83/513/EGK, a 84/156/EGK, a 84/491/EGK és a 86/280/EGK tanácsi irányelv módosításáról és azt követő hatályon kívüli helyezéséről, valamint a 2000/60/EK európai parlamenti és tanácsi irányelv módosításáról (EQS direktiva)

30 Az Európai Parlament és a Tanács 2008/105/EK Irányelve (2008. december 16.) a vízpolitika területén a környezetminőségi előírásokról, a 82/176/EGK, a 83/513/EGK, a 84/156/EGK, a 84/491/EGK és a 86/280/EGK tanácsi irányelv módosításáról és azt követő hatályon kívüli helyezéséről, valamint a 2000/60/EK európai parlamenti és tanácsi irányelv módosításáról (EQS direktiva)
Tisztifőorvosi Hivatala által a veszélyes anyagokkal összefüggő tevékenységekről vezetett nyilvántartása volt, melynek eredményeiről bővebb információt a 3.2.1.2 fejezet tartalmaz.

3.2.1 Pontszerű szennyezőforrások

3.2.1.1 Települési szennyezőforrások

Települési szennyvíz

A pontszerű veszélyes anyag terhelés meghatározó elemei a települési kommunális szennyvíz kibocsátások. A települési szennyvízzel kapcsolatos általános jellemzőket a 3.1.1.1 fejezetben bemutattuk. A veszélyes szennyezőanyagok részarányukat tekintve kisebb mennyiségben vannak jelen a kommunális szennyvízben, azonban abban minden olyan anyag megjelenik, amit megiszunk, megesszünk, vagy lemosunk magunkról, vagy háztartási tevékenységünk során a szennyvíz-elvezető hálózatba juttatunk (pl. gyógyszer, fertőtlenítő-, mosogató-, tisztítóanyagok, festékek, stb.). A települési szennyvízben az ipari üzemek által a közcsatornába vezetett ipari szennyvíz is megjelenik, a szennyezőanyag forrása a szennyvíztisztítónál már nem azonosítható. A települési szennyvíz veszélyes anyag tartalmáról a kibocsátási információkat tartalmazó VALVÉL és E-PRTR adatbázisból nyertünk ki adatokat.

A városi csapadékvíz kibocsátásokra vonatkozóan nem áll rendelkezésre nyilvántartás. Általánosságban megállapítható, hogy a csapadékvíz bevezetéseken kívül a közlekedésből, az időjárástól és fizikai behatásnál kifújott felületekről a csapadékvízzel vízre veszélyes szennyezőanyagok mosódnak be, például olaj, nehézfémek.

A rendelkezésre álló adatok alapján a veszélyes anyagok szempontjából a mért komponensek között a toxikus fémeknek van jelentősége, melyek kibocsátása döntően a kohászathoz és fémfeldolgozáshoz kötődik, de a kommunális szennyvizekben is jellemző (lásd 3-7. táblázat).

3-7. táblázat: Nehézfém kibocsátás 2010-2012 között a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Forrás</th>
<th>Higany kg/év</th>
<th>Kadmium kg/év</th>
<th>Nikkel kg/év</th>
<th>Ölom kg/év</th>
<th>Cink kg/év</th>
<th>Réz kg/év</th>
<th>Króm kg/év</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipari</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Kommunális</td>
<td>1,5</td>
<td>0,7</td>
<td>12,8</td>
<td>12,9</td>
<td>159</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Az első vízgyűjtőgazdálkodási-terv és a rendelkezésre álló adatok alapján a fémek fő forrása a pontszerű szennyezések kivül a belterületekről lefolyó csapadékvíz, hiszen a városi lefolyásban jócskán előfordulhatnak fémek (Cu, Ni, Cr esetleg Cd a forgalomból, Zn a tetővizekből), de jelentős terhelés érkezhet az egyesített a csatornarendszerekből (és persze az illegális csapadékvíz bekötésekből is).

3.2.1.2 Ipari szennyezőforrások

Ipari szennyvíz

Az ipari üzemek keletkező szennyezőikeit generálni kívül a közcsaton keresztül – szükség esetén előírható után – a települési kommunális szennyvíztisztítóba vezetik, ezekről a közvetett kibocsátásokról nincsenek megbízható adatok.

A veszélyes anyagok előfordulásának feltárása érdekében feldolgoztuk az Állami Népegészségügyi és Tisztiorvosi Szolgálat Országos Tisztifőorvosi Hivatala adatszolgáltatását, amely alapján a Balaton részvízgyűjtőtőre vonatkozó összegzést 3-8. táblázat mutatja be.

3-8. táblázat: Veszélyes anyagokat érintő tevékenységek, országosan és a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Anyag neve</th>
<th>Tevékenységek száma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Országos</td>
</tr>
<tr>
<td>benzol</td>
<td>10</td>
</tr>
<tr>
<td>naftalin</td>
<td>37</td>
</tr>
<tr>
<td>nehézfémek</td>
<td>111</td>
</tr>
<tr>
<td>triklór-metán (kloroform)</td>
<td>13</td>
</tr>
</tbody>
</table>

A Balaton részvízgyűjtőn a veszélyes anyaggal összefüggő tevékenységek száma nem számottevő, főként szerves mikroszennyezők és nehézfémek jellemzik a terület ipari tevékenységét (lásd még 3-5 melléklet).

3.2.1.3 Veszélyes üzemek, balesetszerű szennyezések, kárelhárítás

A tervnek tartalmaznia kell a rendkívüli események (balesetek, természeti katasztrófák, havária-szennyezések), továbbá a műszaki berendezésekből származó anyagok általi jelentős szennyezések hatásainak megelőzését, mérséklését szolgáló intézkedéseket, amelyek a nehezen előre jelezhető események esetén is biztosítják a vízi ökoszisztémák veszélyeztetetésének, károsodásának megelőzését, illetve a kár mérséklését, azaz a környezet biztonságát. A környezetbiztonság fogalomkörébe azok a biztonságúkat veszélyeztető események és folyamatok tartoznak, melyek egyrészt természeti (földrengés, árvíz, szélviharok, erdőtűz stb.), másrészt emberi eredetűek (pl. környezet-károsítással is járó ipari, közlekedési katasztrófák).

Veszélyes üzemek

Az Országos Katasztrófavédelmi Főigazgatóság honlapján (www.katasztrofavedelem.hu) található meg a Veszélyes anyagokkal foglalkozó üzem 31 listája. Az üzemek listáját és a potenciálisan érintett víztestek, vízgyűjtők meghatározását a 3-6 mellékletben közöljük, az üzemek elhelyezkedése a 3-3 térképmellékleten kerül bemutatásra. A Balaton részvízgyűjtő a legkevésbé veszélyeztetett, viszont 5 db gyár található a részvízgyűjtőn.

31 Veszélyes anyagokkal foglalkozó üzem: egy adott üzemeltető irányítása alatt álló azon terület egészése, ahol egy vagy több veszélyes anyagokkal foglalkozó létesítményben – ideértve a közösi vagy kapcsolódó infrastruktúrát is – veszélyes anyagok vannak jelen a törvény végrehajtására kiadott jogszabályban meghatározott küszöbértéken belül. Mennyisége, és ennek alapján alsó vagy felső küszöbértékének mindenszempoint.
Vízminőségi káresemények, kárelhárítás

A környezeti (vízminőségi) káresemények nemcsak ipari balesetből származhatnak, azonban töbnyire azok a legsúlyosabbak, ezért tárgyaljuk ítt a veszélyes anyagok fejezet alatt. Kárelhárításról akkor beszélünk, ha a haváriából adódó környezet veszélyeztetés vagy környezet károsítása megszüntetése érdekében azonnali műszaki beavatkozás szükséges (szemben a tartósan károsodott területekkel, ahol kármentesítést kell végezni). Az időben végzett kárelhárítás egyik célja a magasabb költségáfordítással járó kármentesítési munkálatok elkerülése.

A 2010-2012. évek kárelhárítási tevékenységet jellemző adatokat a Környezeti Káresemények Adatbázisából (VIKÁR) nyertük ki és vizsgáltuk meg. A VIKÁR alapján összeállított táblázatot a 3-6 melléklet tartalmazza, az események által érintett vizeket a 3-4 térképmelléklet mutatja be.

A vizsgált időszakban összesen 10 db vízminőségi káresemény történt.

3. fejezet Emberi tevékenységből eredő terhelések és hatások

<table>
<thead>
<tr>
<th>Káresemény típusa</th>
<th>Káresemény vízfolyás (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>olajszennyezés</td>
<td>5</td>
</tr>
<tr>
<td>halpusztulás</td>
<td>2</td>
</tr>
<tr>
<td>szennyvíz bevezetés</td>
<td>2</td>
</tr>
<tr>
<td>egyéb vegyi anyag szennyezés</td>
<td>1</td>
</tr>
<tr>
<td>Összesen [db]</td>
<td>10</td>
</tr>
</tbody>
</table>

Az eseménytípusok eloszlását vizsgálva: jelenleg is listavezetők a kisebb-nagyobb szénhidrogénszennyezések.

A szénhidrogén-szennyezések forrásai a közúti balesetek (felszín alatti víztest minőségi állapotát veszélyeztetve), valamint a kőolaj termekvezetékek havariával. A kőolajvezetékek sérüléseit legtöbbször a vezeték védősávjában engedély nélküli végzett gépi munka (ároksás, tereprendezés) következményei, illetve illegális csőmegfúráshoz kapcsolódóan (bűncselekmény).

Csökkent az eseményszám a szennyvízbevezetésből származó szennyezéseknek (2 db), amelynek kiváltó oka gyakran a technológiai megsértése. Szintén csökkent az egyéb vegyi anyagsszennyezések esetszáma (1 db). Szerencsére a vízi környezetet szennyező, és kárelhárítást igénylő hulladék elhagyások száma csökkenőben van.

3.2.1.4 Múltbeli szennyezések, szennyezett területek kármentesítése

A felszín alatti vizek szennyezés és állapotomban elleni védelméről szóló 2006/118/EK leányírás mellett a VKI célkitűzéseinek teljesülése érdekében ellenőrizni szükséges, hogy a pontszerű forrásokból és szennyezett talajból származó szennyeződési csóvák kiterjedése nem növekszik-e, azok a felszín alatti víztest vagy víztest-csoport kémiai állapotát nem rontják-e, és nem jelentenek-e veszélyt az emberi egészségére és a környezetre. Minden olyan műszaki, gazdasági és igazgatási tevékenységet, amely a veszélyeztetett, szennyezett, károsodott felszín alatti víz, illetőleg földtani közeg megszennyezésére, a szennyezettség, károsodás és a kockázat mértékének csökkentésére irányul, összefoglaló néven kármentesítésnek nevezzünk.

Hazánkban felszín alatti vizekben okozott kár felszámolására - a szennyező fizet elv érvényesítése mellett - már az ezredforduló óta rendelkezünk átfogó szabályozással.
A szabályozás kiegészítésével a Víz Keretrányelv tárgyát képező vizek és védett területek károsítására esetében hasonló eljárást kell követnie a hatóságoknak, illetve a kár okozójának. Általában múltbeli szennyezett területek kármentesítésén a felszín alatti vizek kármentesítését érjük, azonban az elmúlt időszakban több felszíni vizes kármentesítés is történt. Mindkét esetben a bányavágatból kifolyó víz kezelése szükséges a felszíni víz minőségének védelme érdekében. A vörösiszap katasztrófa következményeit is a kárelhárítást követően kármentesítés keretében számolták fel, például a vörösiszapot kikortották a medrekből és partokról.

Jellemzően a MOL Zrt. és a MÁV Zrt. telephelyein (Tapolca, sármelléki katonai reptér, zala-szénhidrogén kutak) fordul elő. A Balaton idegenforgalmi jelentősége mellet, az alegység területén, Tapolcán és Balatonfüzfőn az ipar is jelentős szerepet tölt fel. Tapolcán a hőálló anyagok előállításával foglalkozó Rockwool Hungary Kft. területén tártak fel fenol szennyezést a talajvízben, ami a szomszédos ingatlanra is átkerült. A kármentesítés még folyik, a Kft. technológiát váltott a további szennyezések megelőzése érdekében.

Balatonfüzfőn, a Nitrokémia Zrt. vegyipari tevékenység miatt szennyezett területein több ütemben folyik a kármentesítés. Az alifás és aromás, valamint klórozott szénhidrogének mellett, növényvédőszerek és nehézfém szennyezés is terheli a területeket, melyeken a talajcsere után a talajvíz tisztítása folyik OKKP projektek keretében.

A felszín alatti vizekben lévő szennyeződéseknek az a legnagyobb veszélye, hogy az emberi szem elől rejte vannak, így jelentős részüknél károsodás csak akkor válik ismertté, amikor az már közvetlen veszélyt jelent az élővilágra, sok esetben az emberek egészségére.

Az 1996 óta működő Országos Környezeti Kármentesítési Program (OKKP) célja felelősségi körértől függetlenül a földtani közegben (talajban) és a felszín alatti vizekben hátramaradt, akkumulált szennyezések, károsodások feldерítése, megismerése, azok mértékének feltárása, a veszélyeztetet területeken a szennyezettség kockázatának csökkentése, a szennyezett területeken a szennyezettség megsemmisítése, vagy megszüntetése elősegítése. Az OKKP az Nemzeti Környezetvédelmi Program részét képezi, valamint az egyedi beruházások mellett magában foglalja azokat az általános és országos feladatokat is, amelyek az program irányításához és összehangoz végzéséhez szükségesek.

A szennyező fizet elv betartása mellett azokon a területeken ahol a szennyező tevékenységet végző környezethasználó már nem található meg állami felelősségi körben folyik a kármentesítés. Az állami felelősségi körbe tartozó kármentesítési feladatok elvégzése a kormányzati munkamegosztás szerint történik. Az érintett tárcák kármentesítési beruházásaikat OKKP tárcaprogramok keretében valósítják meg.

Szennyezési csóvák kiterjedésének elemzése

A VGT felülvizsgálata keretében a szennyezett területek számbavételén túl megkíséreltük elvégezni a 2006/118/EC Irányelv 5. cikk (5) pontja szerinti elemzést, amely a felszín alatti vizekben lévő szennyeződési csóvák hatásának értékelése érdekében a szennyezett területekről származó csóvák kiterjedésének tendencia-értékeltelését jelenti. A DPSIR modellt leíró 3. számú „Terhelések és Hatások” című Közös Végrehajtási Stratégiai Útmutató32 alapján a felszín alatti vizek szennyezett területeit pontoszerűen és diffúznak is lehet tekinteni. A szennyezési csóva

kiterjedésének elemzése részbén azt a célt szolgálja, hogy eldönthessük egyes ágazatok szerinti csoportosításban a szennyezések pontszerűnek, vagy diffúznak tekintendő. Másik fontos cél annak kiderítése, hogy a csóvák terjedési tendenciái alapján a kockázat növekszik-e, jelentős-e a szennyezések hatása a felszín alatti vizekre, illetve a környezetre, élővilágra, emberekre.

A feldolgozása a területileg illetékes környezetvédelmi és természetvédelmi felügyelősegének adatszolgáltatása alapján készült 2000-2012 közötti időszakra. Az elemzés eredményét a 3-6 melléklet tartalmazza, az események által érintett vizeket a 3-4 térképmelléklet mutatja be. A vizsgált időszakban kármentesítés mintegy 44 területen történt. Ezen belül kivizsgálás – azaz a szennyezés tényének hatósági megállapítása – az ismert szennyezett területek 1%-án történt, tényfeltárás 9 %-on. Beavatkozás a területek 30 %-ban, monitorozás 61 %-ban történt. A vizsgálati időszak alatt a kezelt területek 4 %-án bizonyítottan megszűnt a szennyezés, azaz a kármentesítést a hatóság befejezettnek nyilvánította.

A szennyezési csóva alakulásáról a felügyelőség, illetve a KÁRINFO nem vezet megbízható nyilvántartást. Ezt mutatja az, hogy az érintett területek 38%-ról nem tudtak információval szolgálni. A területek 34,1 %-ban véli a felügyelőség, hogy a szennyezési csóva egyensúlyi állapotban van, míg 6,8 %-ban növekedést jelölt meg. A kezelt területek mintegy 20,5 %-ban jelezte, hogy a szennyező csóva megszűnt.

A szennyezőanyagok közül legnagyobb gyakorisággal az alifás szénhidrogének (TPH) csoportja (29 db), második helyen a a benzol és alkilbenzolok (BTEX) csoportja fordul elő (22 db). A felszín alatti vízben azonosított szennyezőanyagoknak, policiklikus aromás szénhidrogének (PAH) következnek, együtt a fémekkel (11-10 db), ez után következnek a peszticidek (5 db).

Vízbázis érintettség szempontjából vizsgáltuk a vízbázis belső, külső és hidrogeológiai védőterületének érintettségét. A szennyezett területek több mint 70%-a nem érint vízbázist, nem esik védőterületre.

Hulladékgazdálkodás
A Balaton északi vízgyűjtőjén a vizsgálathoz alapul vett 2008-as adatbázis szerint környezeti kockázatát tekintve a 32 db lerakóból 9 db „nagy kockázatú”, 18 db „közepes kockázatú”, 2 db „kicsi kockázatú” besorolást kapott, 3 db nem kapott besorolást.

Az azóta eltelt időszakban e lerakók közül 15 db lerakóra a rekultiváció megtörtént vagy folyamatban van (egy- v. kététemű rekultivációval vagy teljes felszámolással), 12 db lerakó rekultivációjáról nem áll rendelkezésünkre információ, 1 db lerakó, a Zalahaláp, 010/42 hrsz.-ú ingatlanon lévő, 2023.05.31-ig üzemelhet a jelenlegi IPPC engedélye alapján.

Vízvédelmi szempontból jelentős hatásuk lehetnek azok a kommunális lerakók, melyeknek átmeneti rekultivációja megtörtént, azonban végleges záró szigetelésük határideje: 2024.06.30., illetve 2024.12.31. (Balatonfüred, Balatonrendes, Zalahaláp).

A tervezési alegység déli vízgyűjtőjén számos települési szilárd hulladékkerakó volt található, ami magában foglalta a működő, bezárt, és illegális hulladéklerakókat is.

A műszaki védelem nélküli, nem üzemelő lerakókat bezáró, rekultiválásuk a Mecsek-Dráva és a Dél-Balaton–Sióvölgye Regionális Települési Szilárdhulladék Gazdálkodási Projektek keretében megtörtént, vagy folyamatban van.
A tervezési területen jelenleg két regionális szilárd hulladék lerakó (Marcali, Ordacsehi) üzemel, melyek kapacitása jelentős terhelésnek minősül a Balaton déli vízgyűjtő (s.p.4.3.1.) sekély felszín alatti víztest potenciális veszélyeztetése szempontjából.

A tervezési alegységen a felszín alatti víztestekre jelentős környezeti hatást gyakorolhat még a rekultiváció alatt lévő királyszentistváni ipari veszélyes hulladéklerakó és a marcali veszélyes hulladéklerakó.

A Zala vízgyűjtő területén 2014. évben Zalaegerszegen, Zalabéren (B3 kategóriájú lerakó) és Zalatarnokon (C kategóriájú lerakó) üzemel hulladéklerakó. A legújabban létesült üzemelő lerakó a zalabéri hulladéklerakó, amely egy EU támogatású fejlesztés része volt. E projekt keretében számos a hulladék szelektív gyűjtését és begyűjtését, a hasznosításra való előkészítését és hasznosítását biztosító eszközt (gyűjtőciget, hulladékulvány, átrakó, válogató, komposztáló) állítottak rendszerbe és létesítményt (gyűjtőóra, hulladékulvány, sík) valósítottak meg.

A Zala vízgyűjtő területén 2011-ben Zalabéren (B3 kategóriájú lerakó) üzemel hulladéklerakó. A legújabban létesült üzemelő lerakó a zalabéri hulladéklerakó, amely egy EU támogatású fejlesztés része volt. E projekt keretében számos a hulladék szelektív gyűjtését és begyűjtését, a hasznosításra való előkészítését és hasznosítását biztosító eszközt (gyűjtőciget, hulladékulvány, átrakó, válogató, komposztáló) állítottak rendszerbe és létesítményt (gyűjtőóra, hulladékulvány, sík) valósítottak meg.

Zala megyében 128 db korszerűtlen lerakót teljes körűen rekultiváltak, valamint 11-et átmeneti záróréteggel látottak el. Az átmeneti záróréteggel lezárt hulladéklerakók második ütemű rekultivációjára vonatkozó rekultivációs tervek már benyújtásra kerültek a Felügyelőségre. A nem az előírásoknak megfelelően kezelt veszélyes hulladékok fokozott kockázatot jelentenek a környezetre, azonban a szigorú jogi előírásoknál köszönhetően az egyes hulladékcsoportok közül összességében a veszélyes hulladékok tekintetében van legfőbb kockázat. Csak nagyon ritkán kell veszélyes hulladék engedély nélküli kezelésével vagy illegális elhelyezésével szemben fellépni. A hulladékgazdálkodás a Területi Hulladékgazdálkodási Terv szerint történik.

Általánosan komoly veszélyforrást jelenthetnek az ismert, vagy ismeretlen illegális hulladéklerakók (pl. Koponári-töbör). A jelenleg engedélyezett települési és egyéb hulladéklerakók listáját a 3-8 melléklet tartalmazza, a lerakók elhelyezkedését a 3-16 térképmelléklet mutatja be.

A 2013-as nyilvántartás szerint Magyarországon 41 db létesítmény rendelkezik olyan hulladékezelési engedéllyel, amely alapján veszélyes hulladék ártalmatlanítását végezheti, a Balaton részvízgyűjtőn Nitrokémia Zrt. (Királyszentistván) sorolható fel.

Az ipari hulladékok kapcsán nem lehet figyelmen kívül hagyni a régi lerakókat. A múltban számos terhelés fontos minősítést kapott, mivel a felszín alatti vizek minőségére lokálisan ugyan, de az ország területén mindenfelé előfordulóan olyan kockázatot jelent, amely még rekultivációval sem számolható fel tőkéletesen. Az égetőművek kibocsátási hatása jelentősen csökkentették a szigorodó szabályozást, valamint a technológia fejlődött. Mindenek ellenére a légkörből kiülepedve diffúz veszélyes anyag szennyezéssel számolni kell.

A 2013-as nyilvántartás szerint Magyarországon 41 db létesítmény rendelkezik olyan hulladékezelési engedéllyel, amely alapján veszélyes hulladék ártalmatlanítását végezheti, a Balaton részvízgyűjtőn Nitrokémia Zrt. (Királyszentistván) sorolható fel.

Az ipari hulladékok kapcsán nem lehet figyelmen kívül hagyni a régi lerakókat. A múltban évtizedeken keresztül gondatlanul végzett hulladékkezelés, valamint a mainál jóval enyhébb szabályozás következtében számos helyen szenvedett a szennyezett területek alakultak ki. A régi, ma már lezárt, többnyire rekultivált lerakók mintegy tizede ma is veszélyezteti a felszín alatti vizeket, ezeket tekintjük jelentős pontszerű szennyező forrásoknak. Több veszélyes hulladéklerakó területén, illetve környezetében esetleg évtizedekig tartó kármentesítés szükséges pl. Balatonfűzfőn vegyipari hulladékkezelés történt a nyílt színen, ez ma már környezet-egészségügyi szempontok miatt is elképzelhetetlen lenne, minden esetében a felszín alatti vizek tartósan elszennyeződtek, kármentesítésük folyamatban van.
3.2.2 Diffúz szennyezőforrások

A diffúz veszélyes anyag szennyezés érkezhet felszíni és felszín alatti lefolyással (oldott fál lapotban vagy szilárd formában (talajhoz/hordalékhoz kötötten); továbbá a légköri száraz/nedves kihullással. Az emissziók valamilyen intenzív területhasználat (mezőgazdaság, település) következményei. Bár az egyes (lokális) kibocsátások mértéke önmagában kicsi, hatásuk a vizekre összegeződve jelentkezik. A szennyezés a forrásoktól valamilyen közvetítő közegen keresztül jut el a vizekig, például a talajon, a háromfázisú zónán keresztül a talajvízig, a befogadóba történő belépés vonal, vagy felület mentén történik. A terjedésben (felszíni és felszín alatti transzport) meghatározó szerepük van a hidrológiai folyamatoknak.

Diffúz elsőbbségi anyag kibocsátások

A 2008/105/EK EQS direktíva előírása szerint az elsőbbségi anyagok emisszió leltárának minimális követelménye a releváns elsőbbségi anyagok diffúz kibocsátásának becsleése a folyami terhelés és a pontszerű kibocsátások különbségeként. 2010-re, mint bázis évre a leltárban előírt előzetes állapotértékelés alapján a következő elsőbbségi anyagok tekinthetők relevánsnak Magyarországon: kadmium, ólom, fluorantén, kloroform, PAH-ok, endosulfán, nonilenok, hexaklór-benzol, benz(a)pirén, nikkel, atrazin továbbá jelentős mennyiségű arzén, réz, króm, cink kibocsátás jellemző.

A diffúz kibocsátások becslese az adatok valamelyikének hiánya miatt csak specifikus szennyezőanyagokra és néhány nehézfémre (kadmium, nikkel, ólom) volt elvégezhető. Összességében megállapítható, hogy specifikus szennyezőanyagok és nehézfémek esetében az arzén kivételével a beérkező anyagáram meghaladja a kilépő mennyiséget, vagyis a beérkező terhelés nagy része az országban marad, a vizsgált elsőbbségi anyagok felhalmozódnak.

A diffúz kibocsátások becslését illetően megjegyzendő, hogy az éves terhelés számszerűsítéséhez nem volt elelgendő mennyiségű és minőségű adat, így az eredmények további pontosítása, kiegészítése és a felszíni vizes monitoring fejlesztése szükséges. A környezetben jelenleg diffúz módon jelentővő veszélyes anyagokról csak a felszín alatti és a talaj monitoringból állnak rendelkezésre információk. Eddig még nem végeztünk méréseket a biótákra és a mederűledék mérések is hiányosak. A hiányok pótlására folyamatban van egy országos felmérés.

A felszíni vizek emisszió leltára szempontjából a felszín alatti vizek a veszélyes anyagok tartós raktárának és utánpótlási forrásának tekintethetők. A felszín alatti vizek részarányát a felszíni vizek szennyezésében az előző fejezetben bemutatott modell alapján becsülihetjük. A transzport folyamatok kutatása kiemelten fontos területe a környezetminőségi határérték meghatározásában. Európai szenten a felszín alatti vizekre csak néhány veszélyes anyagra határoztak meg küszöbértéket, azonban a felszín alatti leányirányelv mellékleteinek felülvizsgálata, kiegészítése folyamatban van. Az irányelv I. mellékletében meghatározott küszöbértékek a következők:

- **Növényvédő szerek** aktív anyagai, beleértve megfelelő anyagcseretermékeiket, bomlástermékeiket és reakciótermékeiket³³- 0,1 μg/l, összes³⁴- 0,5 μg/l

³³ „Növényvédő szerek”: a 91/414/EGK irányelv 2. cikkében és a 98/8/EK irányelv 2. cikkében meghatározottak szerinti növényvédő szereket és biocid termékeket.
³⁴ „Összes”: minden egyes, a nyomon követési eljárás során kimutatott és számszerűsített növényvédő szer összege, beleértve anyagcseretermékeiket, lebontási termékeiket és reakciótermékeiket.

Leányirányelv által előírt, a szennyező anyagok toxikológiájára, ökotoxizitására, a környezetben való tartós megmaradására, bioakkumulációs képességére és diszperziós tendenciájára vonatkozó bármely információkról a NÉBIH Talaj- és Agrárkörnyezet-védelmi Igazgatóság szakemberei készítettek egy tanulmányt a növényvédő szerek vonatkozásából. A tanulmány az OVGT 3-4 háttéranyagaként található meg: Dr. Pethő Ágnes (szerk.) et al. (2015. Január, NÉBIH) - Növényvédő szer felhasználás Magyarországon.

3.2.2.1 Települési diffúz kibocsátás

A veszélyes anyagok mindegyikével számolni kell a településen. A kibocsátás pontszerű, vagy vonal menti (közlekedési útvonalak) a terhelés azonban diffúznak tekintendő a pontok sűrű elhelyezkedése miatt, valamint a légköri kibocsátás és a városi csapadékvíz lefolyás is diffúz forrás.

3-10. táblázat: Városi csapadékvíz jellemző szennyezőanyagai és forrásai

<table>
<thead>
<tr>
<th>Szennyezőanyag</th>
<th>Források</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hordalék, szilárd anyagok</td>
<td>Epítkezések és egyéb nem burkolt felületek eróziója, légköri küllepedés (közlekedési és ipari eredetű kibocsátásokból), az épített környezet mállási folyamatai, illetve záporoomlók.</td>
</tr>
<tr>
<td>Oxigénigényes (szerves, lebomló) anyagok</td>
<td>Növényi maradványok (levelek, fűnyesédek), állati ürülék, utcai szemét és egyéb szerves anyagok</td>
</tr>
<tr>
<td>Mikrobiológiai szennyezők, patogének</td>
<td>állati ürülék, egyesített rendszer záporoomló (kevert szennyvíz)</td>
</tr>
<tr>
<td>Tápanyagok (nitrogén, fősfor)</td>
<td>Légköri üledések, fedetlen talajok eróziója, egyesített rendszer záporoomló (kevert szennyvíz), keretekben, parkokban használt môtrágya</td>
</tr>
<tr>
<td>Nehézfémek (cink, réz, kadmium, nikkel, króm, ólom)</td>
<td>Légköri küllepedés (közlekedésbôl, ipari kibocsátásokból), küléni fémtárgyak (pl. ereszcsatornák), személyerők csurgalékvizei.</td>
</tr>
<tr>
<td>Olajok, zsírok</td>
<td>Közlekedés (gépjármûvekbôl), benzinkutak, mosók</td>
</tr>
<tr>
<td>Egyéb szerves mikroszennyezők (peszticidek, fenolok, PAH-ok)</td>
<td>Légköri küllepedés (közlekedésbôl, ipari kibocsátásokból), keretekben használt növényvédelôszerek</td>
</tr>
<tr>
<td>Sók</td>
<td>Sikosság-mentesítés</td>
</tr>
</tbody>
</table>

A felsorolt szennyezőanyagok mindegyikére igaz, hogy a lefolyás, beszivárgás szennyezettsége tág határok között változhat a forrásoktól és a hígulást meghatározó folyamatoktól függően.

A felszín alatti vizek aktuális terhelése arányos a csatornára rá nem kötött lakosokkal, valamint a kiskertek mennyiségeivel. A szennyvízzel gyógyser, biocidek, háztartásban felhasznált ipari termékek jelennek meg, a kiskertekben a növényvédelmi tevékenység szerzoradványai. Megjegyzendő, hogy a biociddok között engedélyezve vannak olyan veszélyes anyagok, amelyek a növényvédő szerként tiltva vannak, ezért a településeken ezekkel is számolni kell. A településen még számolni kell a kisipari tevékenységet végzők (pl. lakatos, autószerelő, mosoda, stb.) kibocsátásaira, valamint a közlekedést kiszolgáló létesítmények (benzinkút, jármûtelep, stb.) balesetszerű, illetve nem megfelelő üzemeltetésbôl származó szennyezéseire. Mindezek a felszín alatti vizekbe és a csapadékvíz elvezetéssel a vízfolyásokba, tavakba kerülhetnek és a mérések szerint kerülnek is.
Sajátos, de feltételezett nagy számuk miatt, **jelentős veszélyforrást** képviselnek a felhagyott, vagy meghibásodott, esetleg már eredendően rosszul kivitelezett kutak, amelyek felgyorsíthatják a felszín közelében található szennyeződéseket a nagyobb mélységekbe való lekerülését.

3.2.2.2 Ipari diffúz kibocsátás

A veszélyes anyagok pontszerű kibocsátásai jellemzőek az iparra, azonban a légkörbe kibocsátott ipari szennyezőanyagok a légköri kiülepedésben diffúz módon jelennek meg. A Balaton rézfolyón két nagyobb ipari góc található: Zalaegerszeg és a Fűzfői-öböltől északra lévő gyártelep és környéke.

- A határértéket meghaladó fémem esetében az anyagokra jellemző, ipari termeléshez köthető lehetséges források/tevékenységek Magyarországon is jelen vannak (pl. fémpipar, olajipar, textilipar, műtrágyagátyártás, szerves és szervetlen vegyipar, stb.), transzport folyamatok ma jelentős diffúz forrást jelent a légköri kiülepedés, és a burkolt felületre való lefolyás.

- A **PAH vegyületek** köszénkátrányban vannak jelen. Kipufogógázból, kőolajpárlók, kályhák füstgázából kerülnek a környezetbe, majd légköri kiülepedéssel vagy lefolyással jutnak a vizekbe. Lehetőséges pontforrásként a kibocsátást jellemző ipari tevékenységek mindegyike jelen van Magyarországon.

- Az egyéb szerves anyagok (kloroform, triklórt-etán, 1,2-diklóretán, pentaklórt-benzol, nonilfenol) esetében főként a gyártás, felhasználás során keletkező veszeségek, kibocsátások vagy a hulladéklerakás eredményezhet felszíni vizeket, míg a felszín alatti vizek esetében a fent megadott határértékek érvényesek.

3.2.2.3 Mezőgazdasági (erdészeti) diffúz kibocsátás

A veszélyes anyagok egyik legnagyobb csoportját a növényvédő szerek jelentik, amelyek közül jelen elemzés szerint határértéket meghaladó komponensek jelentős problémaként azonosíthatóak, mivel egyetlen komponens túllépése esetében is gyenge kémiai állapotúnak kell minősíteni felszíni vizeket, míg a felszín alatti vizek esetében a fent megadott határértékek érvényesek.

A Balaton rézfolyón Aldrint, HCH-t, Triazionokat, Acetoklórt, Propizoklórt, Propaklórt és **Dezetil-terbutilazint** mutattak ki, amelyek közül több perzisztens. A perzisztens szennyező anyagok közül többet is elterjedten használtak a mezőgazdaságban, kivonásuk ellenére jelenlétük ma is kimérhető az élelmiszerlánc minden elemében, így az emberekben is. A téma fontossága és kiterjedtsége miatt az **OVGT 3-4 háttéranyag**-ban a NÉBIH szakértői többlete szempontból elemzik a növényvédő szerek múltbeli felhasználását. A jelenlegi forgalmazási adatok minden évben közlésre kerülnek a NÉBIH honlapján:

35 „perzisztens” - tartósan fennálló, ezek közül POP - Persistent Organic Pollutants - Lassan lebomló szerves szennyező anyagok
MTA Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet 2013-ban a triazinokra (amelyek perzisztens növényvédő szerek) készített elemzése alapján a felszín alatti vízben mérhető peszticidek általában nem pontoszerű szennyező forrásból (pl. gyártás, hulladéklerakás), hanem a multbeli felhasználás következményeként diffúz forrásból származhatók.

3.2.2.4 Bányászat

A diffúz szennyezőforrások között mutatjuk be a bányászati tevékenységet, mivel ez az egyetlen olyan (elsősorban felszín alatti vizeket) potenciálisan veszélyeztető tevékenység, amely nagy területeket érinthet.

homok- és agyagbányák jelentős részénél a fekü a talajvíz színe alatt húzódik, így a bányászat során felszínre kerül az addig védett felszín alatti víz. A bányabezárást követően bányató marad vissza, amelynek rekultivációja, majd utóhasznosítása - a felszín alatti vízkészlet minőségének védelme érdekében - különös figyelmet igényel.

Az OKIR nyilvántartás szerint 3 bányászati üzem tartozik a PRTR létesítmények közé. Ezek a szénhidrogén kitermelésével, szállításával és tárolásával kapcsolatosak, valamint 8 db bánya mérete meghaladja a rendelet I. mellékletében meghatározott küszöbértéket (25 ha).

Tekintettel a bányászat felszín alatti vizekkel való szoros kapcsolatára külön tanulmány foglalkozik a lehetséges hatásokkal, illetve a bezárt bányák, meddőhányók és zagytarozókkal kapcsolatos veszélyekkel: **OVGT 3-5 háttéranyag**.

3.3 Morfológiai beavatkozások

A hazai 4 részvízgyűjtő legkisebb tagja a Balatoné. Kis területe ellenére sokféle tájegységet tömörít magába. Egyetlen olyan részvízgyűjtőnk, amely fontosságát nem egy vízfolyás, hanem legnagyobb tavunk hangsúlyozza.

A Balaton részvízgyűjtő az egyetlen, amelyet nem érintenek külföldi terhelések, szabályozottságának mozgatói, vízhasználata teljes egészében országhatáron belül marad.

Az országos tervben felsorakoztatott emberi igények kielégítését szolgáló beavatkozások mindegyike megtalálható a részvízgyűjtőn:

- völgyzárógátak, duzzasztóművek, zsilipek, magas fenékgátak, és fenékküszöbök;
- az árvízvédelmi töltések (de csak a Zala Kis-Balaton előtti rövid szakasz van jelen);
- a szabályozott, illetve rendezett medrek;
- zsilipekkkel szabályozott vízszintű állóvizek, szegényes parti növényzettel;
- vízkivétel, vízvisszatartás, vízátvezetés;
- a nem megfelelő mértékű, technológiájú és gyakoriságú fenntartás.

A természetes vízfolyások között kevés olyan, amelyet nem érint valamilyen jelentős hidromorfológiai hatás. A nagyarányú befolyásoltságot mind a Balatonon, mind a vízfolyásokon elsősorban a szabályozottság okozza.

A következő ábra alegységenként mutatja meg a víztestek számát, és azon belül a műtárgyal rendelkező illetve nem rendelkező víztestek arányát. Mindkét alegységben 25% körüli a műtárggal nem rendelkező víztestek száma.
3.3.1 Keresztirányú műtárgyak, duzzasztások

A keresztirányú műtárgyak számát típusuktól függetlenül az alegységeken a következő ábra mutatja be.

A „Zala” (4_1), alegység mutatja fel a több műtárgyat. A keresztirányú művek célja változatos, deitt is a halas-, vagy horgásztavi hasznosítás, illetve a mederesés csökkentés megvalósítása jelentős.
3.3.2 Hosszirányú beavatkozások

Meder szabályozása, partvédelem

A szabályozást mindig valamilyen igény hozza létre (árvízlevezetés, vízvisszatartás, stb.) Egyetlen felszíni víztestünk sem mentes az emberi tevékenységtől, annak foka változhat.

A Balaton részvízgyűjtő vízfolyás víztesteinek 45%-án olyan mértékű a beavatkozás a meder alakjába, hogy az már erősen módosított kategóriába helyezi a vízfolyást. Természetesen ide tartoznak a tározóval rendelkező víztestek is (ahol a tározó mérete nem éri el az 50 ha-t.)

Az 50 ha-nál nagyobb tározók közül 6 található itt, jelenleg erősen módosított állóvíz víztestként. (A VGT1-ben, mikor a vízfolyások részének tekintettük a tározókat, ez a szám az erősen módosított vízfolyás víztestek számát növelte.)

A Balaton partvonalának mintegy fele partvédőművel védett. A partvédőművek magassága és hossza a mindenkori szabályozási vízszinthez igazodik, a maximum szabályozási vízszint megemelése további partbiztosítások kiépítését tenné szükségessé.

3.3.3 Fenntartási tevékenységek

3.4 Vízjárást módosító beavatkozások

A Víz Keretirányelv előírja, hogy a vízgyűjtő-gazdálkodási tervben szükséges a vizek mennyiségi állapotára ható terhelések számbavétele a vízkivételekkel együtt. Hazánkban a felszíni vizek jó ökológiai és a felszín alatti vizek jó mennyiségi állapota szempontjából a vízkivételek döntő
jelentőségűek. A csapadék, az abból táplálkozó készletek térbeli és időbeli egyenlőtlen eloszlása miatt a természetes élővilág és az ember között kisvizi időszakban versengés alakul ki a vízkészletekért. A vízkivételek, vízbevezetések és más vízgyűjtőre, vízfolyásba történő átvezetések megváltoztathatják a felszíni víztestek természetes vízjárását, lefolyási viszonyait, olyan mértékben, hogy az már akadályozhatja az ökoszisztéma működését és a jó ökológiai állapot elérését. A felszín alatti vízből történő kitermelés pedig a felszín alatti víztől függő ökoszisztémánk (FAVÖKO) elöl vonhatja el a fennmaradásukhoz szükséges vizet.

A felszíni vizek ökológiai állapotát jelentősen befolyásolja, hogy a víztérben megvan e az élőlények számára a mozgás (vándorlás) lehetősége, a mederforma és a sebességviszonyok változatossága biztosítja-e a kivánatos diverzitást, illetve a vízhozam és ehhez kapcsolódóan a vízszintingadozás lehetővé teszi-e a különböző szinten elhelyezkedő növényzónának megfelelő vízellátását. A jelentős kölcsönhatás miatt lehetetlen a jó állapot elérése, ha az előzőekben felsorolt, összesítve hidromorfológiai viszonyoknak nevezett állapotjellemzőkben számottevő változás következik be. Az emberi igények kielégítése gyakran vezet ilyen mértékű elváltozásokhoz, és sok esetben ez nem is oldható meg másképpen. Az emberi igények kielégítését szolgáló beavatkozások körébe tartoznak:

- a hosszirányú mozgást akadályozó keresztirányú elzárást okozó völgyzárógátak, duzzasztóművek, zsíipek, magas fenékgátak, és fenékküszöbök – az utóbbi kivételével ezek a beavatkozások duzzasztott viszonyokat (nagyobb vízmélység és lassúbb vízmozgás, esetleg állóvíz) is okoznak,
- az árvédelmi töltések, amelyek leszűkítik a diverzitás és a szaporodás szempontjából rendkívül fontos ártereket, illetve elzáják a folyótól a rendszeres vízpótlást igénylő holtágakat és mély ártereket,
- túl gyors lefolyást és túl homogén sebességviszonyokat, esetenként medermedyűlést eredményeznek a szabályozott, illetve rendezett medrek,
- zsíipekkel szabályozott vízszintű állóvizek, szegénységi parti növényzettel,
- a mederben lefolyó vízhozam mértékét és változékonyságát módosító vízkivétel, vízvisszatartás, vízátvezetés, amelyek a vízállás- és sebességviszonyok megváltozásához vezetnek,
- a nem megfelelő mértékű és gyakoriságú fenntartás (mélyre kotort meder, teljesen kiirtott parti növényzet), amely akadályozza a mederbeli növényzet fejlődését, és csökkenti a vízfolyás természetes védőképességét a partközeli területekről származó szennyezésekkel szemben.

A 3-11. táblázat a jelentős beavatkozások által érintett természetes víztestek arányát foglalja össze. Egy víztesten – különösen a nagyokon - több műtárgy, illetve beavatkozás is előfordulhat. Ez az állapot szempontjából kevésbé fontos – hiszen egy is elegendő ahhoz, hogy a víztest ne érje el a jó állapotot -, de a befolyásoltság mértéke és az intézkedések tervezése szempontjából az is fontos információ, hogy a hatások, illetve a „nem jó állapot” okai mennyire összetettek.
3-11. táblázat: A morfológiai viszonyokat és a vízjárást jelentősen befolyásoló emberi beavatkozások természetes vízfolyások és állóvizek esetén

<table>
<thead>
<tr>
<th>Vízfolyások típus-csoportja</th>
<th>Keresztrányszakas 238/58%</th>
<th>Szabályozottság 373/91%</th>
<th>Módosított vízvásárlás 194/47%</th>
<th>Nem megfelelő fenntartás 348/84%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dombvidéken</td>
<td>kis- és középes vízfolyások</td>
<td>3/50%</td>
<td>4/67%</td>
<td>3/50%</td>
</tr>
<tr>
<td></td>
<td>nagy folyók</td>
<td>373/91%</td>
<td>194/47%</td>
<td>348/84%</td>
</tr>
<tr>
<td>Sikvidéken</td>
<td>kis- és középes vízfolyások</td>
<td>137/49%</td>
<td>262/95%</td>
<td>240/87%</td>
</tr>
<tr>
<td></td>
<td>nagy folyók</td>
<td>19/54%</td>
<td>32/91%</td>
<td>7/20%</td>
</tr>
</tbody>
</table>

Nagylényeknek számítanak azok a víztestek, amelyek kifolyású szelvényéhez tartozó vízgyűjtőterület nagyobb, mint 5000 km². Az első szám az érintett víztestek számát mutatja, a második az adott kategórián belüli %-os arányt.

A 3-7. ábrán a víztesteket aszerint színeztük, hogy hány önmagában is jelentősnek számító hatásnak vannak kitéve. A természetes víztestek mindössze 8%-át éri egyetlen hatás, a kettő, három, illetve négy hatással terhelt vízfolyások aránya rendre: 35, 28, és 27 %, (tehát nincs jelentős különbség)

3-9. ábra: Jelentős emberi beavatkozások száma a vízfolyásokon

A Balaton északi részvízgyűjtő egészét érintő, a lefolyási viszonyokat jelentősen módosító beavatkozások nem történtek. A Balaton-térségi meliorációs munkák keretében elsősorban a Lesence-patak vízgyűjtőjén történtek beavatkozások. A tő vízminőségének megóvása és javítása érdekében a külső tápanyagterhelést csökkentő beavatkozások közül kiemelkedik a Kis-Balaton Vízvédelmi Rendszer (4-1 Zala tervezési alegység része) megvalósítása, valamint a Balatonba torkolló vízfolyásokra épült szűrőmezők és hordalékfogó műtárgyak megépítése.
A déli részvízgyűjtőn a valamikori ös Balatonhoz tartozó berekterület hasznosítása, mezőgazdasági művelésbe vonása, beépítése miatt a múlt század elején megépültek a területek víztelelnitését szolgáló szivattyútelepek, nevezetesen a balatonfenyvesi, belattelepi, ordacsehi, balatonlellei, balatonöszödi, és zamárdi telepek. Rendezésre kerültek a külvizeket elvezető, jelentősebb főbefogadók. Ennek során a gépi fenntartás feltételeit is megteremtették a vízfolyáskezelők, ennek során pl. több, a Balanton a hordaléktól mentesítő hordalékgóp, ún. sankoló műtárgy épült. A vízelvezető rendszerek (üzemi árkok, társulati, állami befogadók) kiépítési mértéke egymással összhangban történt.

A rendszerváltást követően a tulajdonviszonyokban bekövetkezett változások a vízelvezetőrendszerekre is hatottak. Az addig egységes üzemi árokához, különösen az árkók terekkel rendelkező területeket, azon belül a balatonfenyvesi, belattelepi, ordacsehi, balatonlellei, balatonöszödi, és zamárdi területek megépültek.

A rendszerváltást követően a tulajdonviszonyokban bekövetkezett változások a vízelvezetőrendszerekre is hatottak. Az addig egységes üzemi árokához, különösen az árkók terekkel rendelkező területeket, azon belül a balatonfenyvesi, belattelepi, ordacsehi, balatonlellei, balatonöszödi, és zamárdi területek megépültek.

A Balaton partvonalának hossza 235,6 km, ebből természetes part 128,1 km, partvédőművel bevédett 107,5 km. A partvédőművel bevédett szakaszból a véglegesen kiépített partvédőmű hossza 85,23 km, az ideiglenes védelemmel rendelkező (köszörúos) szakasz hossza pedig 22,27 km. A Balaton 43 parti településén 101 kikötő és mintegy 140 csónakkikötő üzemel. A Balaton vízszintszabályozása a siófoki estélyezsilippel történik. A műtárgy kapacitása elméletileg 80 m³/sec, de a Sió-csatorna mederállapota miatt ténylegesen csak 50-60 m³/sec a leeséstől kapacitás.

A folyók vízjárását a napi vízállások, vagy vízhozamok éven belüli változása jellemzi. Természetesen nem egy év, hanem hosszú időszak vízállásainak és vízhozamainak változása ad helyes információt a folyók vízjárására. Az LKV (legkisebb víz) és LNV (legnagyobb víz) közötti különbség - a vízjáték – alapján következteti a vízjárás változásainak és minőségen kívül a vízjátékos kiválasztási eljárását is.

A felszín alatti vizek vízjárása általánosságban sokkal kiegyenlítettebb, mint a felszíni vizeké, a hidrometeorológiai változásokra késleltetve reagálnak, természetes tározásai képességük függvényében biztosítani tudják a felszíni vizek alaphozamát. A különöző folyók és vízbevételi telepek vízfolyását, az árkok, az időjárás, az emberi befogadások, a tározók vízvisszatartása, a lefolyást, a kis-, közép- és nagyvízi állapotok egyaránt befolyásolják.

A természetes vízjárás elsősorban az időjárásától függően változhat az időjárási tényezőkön keresztül, de alakítják a lefolyási viszonyokat. A hidrometeorológiai változások késleltetve reagálnak, természetes tározásai képességük függvényében biztosítani tudják a felszíni vizek alaphozamát. A különöző folyók és vízbevételi telepek vízfolyását, az árkok, az időjárás, az emberi befogadások, a tározók vízvisszatartása, a lefolyást, a kis-, közép- és nagyvízi állapotok egyaránt befolyásolják.
A vízjárás a VKI szerint akkor éri el a jó állapotot:
- ha völgyzárógátas tározó esetén a tározóból kisvízi időszakban annyi vizet engednek le az alvíz felé, amennyi felülől érkezik,
- ha vízierőműveknél nincs csúcsrajáratás,
- ha a vízkivételek nem csökkentik rendszeresen a mederben maradó vízhozamot az ökológiai szükséges minimum alá,

továbbá nem történik a kisvízi hozamhoz képest jelentős vízbevezetés (amelynek elsősorban szennyezett bevezetésnél van jelentősége).

3.4.1 Víz visszatartása vízhasznosítási célból

A völgyzárógátas tározók, céljukból és üzemeltetésükből adódóan gyakran teljes egészében visszatartják a tápláló vízfolyáson érkező vizeket. Így nem érvényesül az elv, miszerint a kisvízi időszakban érkező vizeknek megfelelő mennyiségét a tározóból le kell ereszteni az alatta lévő vízfolyás-szakasz számára. A kritérium az ökológiai szempontból a mederben biztosítandó (az ún. mederben hagyanodó) vízhozam (időnként használatos a „készlet” és „ígény” elnevezés is). Egyes tározókban, halastavakban fellépő vízminőségromlás (pl. eutrofizáció) kockázatossá teheti az alvízi szakaszon a jó állapot fenntartását. Kisvízi körülmények között ilyen esetben a tározóból történő vízeresztés nem éri el a célját.

Meglévő vízkészleteinkkel a jövében lényegesen takarékosabban és előrelátóbban kell gazdálkodnunk. Azokban az időszakokban amikor többször rendelkezünk, nem automatikusan elvezethető, hanem a lehetőség szerinti maximális visszatartással kell élni. A belvizek kezelése ma gyakran ellentmond a környezeti adottságokhoz való alkalmazkodásnak és a készletekkel való fenntartható gazdálkodásnak. A tavaszi belvizeket elvezethetővé teszünk, majd az aszályos időszakban az elvezetett mennyiségek visszakormányozása nem csak gazdálkodási, hanem az érintett természeti értékek fenntarthatását is szolgálja. A visszatartott és pl. a felszín alatti visszapatlódi készletek térségi szinten segítik és segíthetik a természetes állapotok visszaállítását. A települési térség számos esetben a készletek biológiai szűrőként történő utótisztítása, ami egyben a felhasznált vízkészletek helyben maradását és visszapótlódását is elősegíti.

A Zala vidék védett területei tekintve is sajnos általánosnak mondható jelenség a flóra- és fauna elszegényedése, az adventív, idegenhonos növény- (és állat-) fajok térhódítása, a szárazodással összefüggő állapot-átalakulás, a nem megfelelő gyeppáncéldászadás, jelentős részben a helytelen mező- és erdőgazdálkodási gyakorlat. A vízfolyások túlzott szabályozása, esetenként átjárhatatlansága, a víz vissza nem tartása szintén komoly problémákat eredményeznek. Természetvédelmi elvárás lehet a víz visszatartása a mesterséges mederben, kanyarulatok kiépítése a mesterséges mederben.

A lakott területeken átmenő patakok esetében problémát jelenthet még a tisztított vízbevezetés. A Zala forrásvidékén (Szalafő) például a nyári időszakban több tisztított szennyvíz kerül a mederbe, mint amit a forrásból származik, így nagyon leromlik a vízminőség.
Az időjárás szárazodása és az ebből következő vízhiány is jelentős problémák kiváltója, mert számos patak nyáron gyakran kiszárad, élővilága elpusztul. Ezen patakok esetében a vízgyűjtőben a vízvisszatartás javítása kívánatos. Fontos lenne a vízgyűjtőjükön a folyamatos erdőborítás biztosítása, a patakok árnyalásának megoldása.

Mindezek miatt a védett élőhelyek károsodása a vízgyűjtő patakja mentén is kifejezett, jellemző a gyomosodás, általában a szárazodás miatt degradáció. Az élőhelyek feldarabolódnak, szűkülnek, a patakfauna szegényedik, terjednek az adventív és invazív, illetve zavarás tűrő fajok.

A probléma egyik oka, hogy a vízfolyások csatornája jellegében miatt a külvizek gyorsan átvezetődnek, csökken a vízkészlet, az általános vízhiány, de korábban a száraz hûtjainak miatt igénybe való használat is jelentős problémát okozott.

Az elmúlt évek csapadékhángra következében regionális léptékben csökkent a vízvisszatartás a vízfolyások szintje is. A probléma kiváltója a vízfolyások túlszabályozott, erdőbetonos vízvezetés, melyeknek az átalakítása és felújítása szükséges. Az újításokkal azonban az áradások és az élőhelyek károsodása továbbra is kockázatot jelent.

Összességében megállapítható, hogy a vízgyűjtő területen az időjárás szárazodásán túl, a vízfolyások túlszabályozottágásával és a természeti változások miatt jelentős problémák teremtenek.

Problémát jelent, hogy a vízkészlet megőrzése, tartalékolása érdekében alig történik vízvisszatartás Magyarországon. Az úgynevezett „zöld infrastruktúrákat” nem használjuk ki a rendhagyó időjárásra, alkalmazkodási érdekében. A természetközeli területek hasznos, úgynevezett „ókoszisztéma szolgáltatásokat” nyújthatnak a társadalom és a gazdaság számára például a talaj szén- és vízmegkötő képességének javításával, valamint a vízmérgezés esetén a vízvisszatartás és a környezet megőrzése érdekében a vízgyűjtő területen.

Az elmúlt években csapadékhángra következében regionális léptékben csökkent a vízvisszatartás a vízfolyások szintje is. A probléma kiváltója a vízfolyások túlszabályozott, erdőbetonos vízvezetés, melyeknek az átalakítása és felújítása szükséges. Az újításokkal azonban az áradások és az élőhelyek károsodása továbbra is kockázatot jelent.

Összességében megállapítható, hogy a vízgyűjtő területen az időjárás szárazodásán túl, a vízfolyások túlszabályozottágásával és a természeti változások miatt jelentős problémák teremtenek.

Problémát jelent, hogy a vízkészlet megőrzése, tartalékolása érdekében alig történik vízvisszatartás Magyarországon. Az úgynevezett „zöld infrastruktúrákat” nem használjuk ki a rendhagyó időjárásra, alkalmazkodási érdekében. A természetközeli területek hasznos, úgynevezett „ókoszisztéma szolgáltatásokat” nyújthatnak a társadalom és a gazdaság számára például a talaj szén- és vízmegkötő képességének javításával, valamint a vízmérgezés esetén a vízvisszatartás és a környezet megőrzése érdekében a vízgyűjtő területen.

Problémát jelent, hogy a vízkészlet megőrzése, tartalékolása érdekében alig történik vízvisszatartás Magyarországon. Az úgynevezett „zöld infrastruktúrákat” nem használjuk ki a rendhagyó időjárásra, alkalmazkodási érdekében. A természetközeli területek hasznos, úgynevezett „ókoszisztéma szolgáltatásokat” nyújthatnak a társadalom és a gazdaság számára például a talaj szén- és vízmegkötő képességének javításával, valamint a vízmérgezés esetén a vízvisszatartás és a környezet megőrzése érdekében a vízgyűjtő területen.

36 Zöld infrastruktúra - egymással kölcsönhatásban álló természetes területek (köztük mezőgazdasági területek) hálózata, például zöldségtanya, vizes terület, parkok, erdők és természetes növénytársulások, valamint tengeri területek, amelyek befolyásolják a viharok útját, a hőmérsékletet, az árvízveszélyt és a víz, a levegő és az ökoszisztémák minőségét. http://ec.europa.eu/environment/nature/ecosystems/background.htm
3.4.2 Vízátvezetések

Az árvizek elleni védekezés eszköze a vízátvezetések kevésbé gyakori formája, az árapasztó csatorna, amely kedvező topográfiai feltételek esetén létesíthető. Funkciója, hogy árvízveszélynek kitett településeket, területeket jelemző kiágyazva, az árvízi lefolyás egy részét másik vízfolyásba vezesse át. Jóllehet az árapasztó csatorna csak árvíz idején jut szerephez, azonban medrének élővilága miatt kisvízi körülmények között is indokolt lehet egy korlátozottabb mértékű, ökológiai célú vízátadás.

A vízátvezetések többségükben a kis- és középvízi viszonyokat módosítják, döntően azt a vízfolyást, amelyből átvezetnek és amelynek vízkészlete ezáltal csökken. A befogadó töbnyire mesterséges vízfolyás, csatorna, így azoknál a többlet vízhozam megjelenése kevésbé érzékeny ökoszisztémákat érint.

Minthogy a víztestek szempontjából az átvezetés lényegében nem különbözik a vízkivétel, illetve a bevezetés következményeitől, az átvezetések okozta hidrológiai terhelést a vízkivételek és bevezetések értékelésével azonos szempontok szerint és azokkal összevonva minősítettemük.

3.4.3 Vízszintszabályozás

Az állóvizek esetén a legerőteljesebb emberi hatás a vízszintszabályozás, azaz a bevezetések és a leeresztések szabályozása. Ezen emberi hatás a természetes tavaink közel felét érinti. A vízfolyás vízszintjének meghatározott szinten való tartásával egy, vagy egyszerre több vízgazdálkodási igény elől ki, pl. a hajózáshoz szükséges vízmélység, vízikvétel (ívó, ipari, öntözés, elövít) biztosítása, vízerő-hasznosítás, vízfolyás-szabályozás, vízkormányzás, természetvédelem. A vízszintszabályozás célja általában a vízszint és az igények közötti egyensúlyra jutás, azonban ez csak az ideális eset. A vízszint megjelenése függ az időjárástól, a téli és nyári időszakok ételében legtöbb esetben a vízszint viszonylag alacsony a vízszint alatt álló víztesteknek, de a középső és felső vízszint alatt ez az alacsony vízszint figyelhető meg a vízholóforrástól és a vízszintolóforrástól is függően, hogy milyen időjárási szennyeződés található.

Balaton

A kiemelt jelentőségű Balaton – mint VKI szerinti állóvíztest – a VKI minősítés szerint jó ökológiai és kémiai állapotú. A Balaton vízkészlet-gazdálkodásának alapvető célkitűzése, hogy az ökológiai kritériumok szem előtt tartásával az üdülésnek megfelelő vízszint (fürdőzésre, vízi sportolásra alkalmas állapot) és a kommunális vízigény biztosítása viszonylag alacsony. A vízszintszabályozás lényege, hogy a tó leeresztését olyan mértékben szabályozzuk, hogy a tóban az ökológiai szempontoknak és az emberi igényeknek megfelelő (pl. fürdőzés, hajózás stb.) vízszintet tartsunk.

Vízmennyiség problémái:

A Balaton tekintetében a társadalmi és ökológiai érdekek látszólag ellentétesek. Például a tartósan magas vízszint a nádasok fejlődését károsan befolyásolja, szaporodását gátolja, viszont az üdülési és jövővízi vízhasználat az állandó magas vízszintet igényelne. A tó vízszintjét azonban alapvetően a mindenkori hidrometeorológiai feltételeket alakítják. A magas vízszinttartás egyik műszaki feltétele a Sió csatorna és leeresztő zsilip vízszállító képességének megfelelő szintű
kiépítése. A vízszintszabályozás műszaki feltételei (Siófoki leeresztő és hajó zsírip, Sió csatorna) – a rekonstrukciós munkák és a fenntartás részleges elmaradása miatt – jelenleg nem biztosítottak.

A fenti problémát jól érzékelte, hogy a tó vízszintcsökkenése 2000 és 2003 között olyanná vált, amelyre a mérések kezdete óta még nem volt példa, és a vízhiány az időszak végére már problémát okozott egyes emberi igények kielégítésében.

Kis-Balaton

Fontos kiemelni a területen található számos mesterséges, vagy erősen módosított állapotú csatornát, melyek a Kis-Balaton környékén rendszerint a belvízelvezetést szolgálják. Általános, országos probléma a jelenlegi belvízrendszer nem megfelelő vízvisszatartása és a befogadók előtti szűrőmezők hiánya. A Kis-Balaton tározóinak és így közvetve a Balaton vizének minőségére való tekintettel foglalkozni kell a kérdéskörrel, hiszen az egykori vizes élőhelyek szárazodása komoly ökológiai problémákat vet fel (pl. lábas égeres begyomosodása).

Zala

A Zala folyót a XIX. és a XX. században szinte teljes hosszában szabályozták. E munkák során a kanyarokat majdnem mindenhol leválták, a folyót kiegyenesítették, a korábbi vízimalmokat megszűnték. A malmok elbontásával azok duzzasztása is megszűnt, az így megnövekedett esés következtében a víz sebessége egyes szakaszokon oly mértékben megnőtt, hogy az káros kimosásokat okozott. E károkat megszüntetésére több helyen vált szükségessé eséscsökkentő fenéklépcső megépítése.

Felszín alatti vizek

A felszín alatti vizek vízszintjét is gyakran szabályozzuk, például amikor az építési munkaterületet víztelenítenünk, azonban ez ideiglenes beavatkozás ezért nem jelentős. Megváltoztatja a felszín alatti vizek vízszintjét, ha az áramlás útjába toltatja hatású létesítményt, például mélygarázst építtünk be (megemeli), vagy egy a talajvíz szintjébe mélyen bevágódó mesterséges medrelet hozunk létre majd azon keresztül elvezetjük a beszivárgott vizet (függgővizes). Magyarországon kb. 200 ezer hektárban helyeztek el a talajba dréncsöveket a mezőgazdasági területeken a talajvíz szintjének szabályozására (melioráció). A létesítmények műszaki állapotáról nincsenek információk, ezért a beavatkozás jelentőségét sem lehet meghatározni. A kiterjedt mesterséges felszínű vízváltozásokat is szabályozza a talajvíz szintjét, a felszín egyenlítési működtetésének függvényében csökkenti, vagy megemeli a felszín alatti víztározókat. VKI szempontból a legfontosabb elvárás, hogy indokolatlanul ne változtassuk meg a természetes vízjárás jellemzőit, azaz a belvízelvezető rendszerek csak a többletvizeket vezessék el és a fennmaradó időszakban ne csapolják meg a felszín alatti vizeket. Ehhez a területi vízgazdálkodás és csatornahálózat átalakítása szükséges: új létesítmények és az üzemrend módosítása, valamint zöld infrastruktúrák alkalmazása a visszatartásra.
3.4.4 Vízkivételek és bevezetések

Országos kitékintésben a vízkivételekről, vízhasználatokról megállapítható, hogy a 90-es évek elejétől kezdődően csökkent az egy főre jutó vízfogyasztás, és 1997-től kezdődően kismértékű ingadozással lényegében stagnáló közüzemi fogyasztás figyelhető meg. 2000 óta az összes termelési célú tényleges vízkivétel mennyisége is stagnál. A tényleges vízkivétel minden évben elmarad az engedélyezett, (a vízjogi engedélyben) lekötött mennyiségétől. A víztestek állapotértékeléséhez (lásd 5. fejezet) részletes vizsgálat szükséges, mivel minden egyes víztest esetében különböző lehet a települési, ipari, mezőgazdasági és egyéb felhasználási célra történő jelentős (az ökoszisztémára káros hatással levő) vízkivétel mértéke, beleértve a szezonális változékonyással és az éves összes vízgényt. A vízkivételek hatása általában „csak” lokálisan jelentkezik, azonban előfordulhat, hogy víztest méretben, vagy több víztestre is átterjedően, esetleg a víztesttől függő élőhelynél tapasztalható károsodás. A legnagyobb problémát azok a vízkivételek jelentik, amelyek a természetes változások és/vagy az éghajlatváltozás és/vagy regionális vízkészlet változást okozó emberi beavatkozások miatt egyébként is vízhiányos térségben tovább súlyosbíthatják a helyzetet.

Mind a felszín, mind a felszín alatti vízkivételek értékelését nehezíti, hogy

- a természetes kisvízi készletek meghatározásához nincs elegendő vízrajzi mérés, különösen a forrás és a kisvízfolyás, valamint a csatornahálózat hozam- és a dombvidéki területeken a talajvízsint mérések hiányoznak;
- nem rendelkezünk országos hidrológiai modellel, amely a lefolyás, beszivárgás becsülésével a hiányzó vízrajzi észlelések egy részét helyettesíthetné;
- a vízkivételi, hasznosítási adatok hiányosak, ellentmondásosak.

3.4.4.1 Felszíni vizek vízmérlege

A vízfolyásokból, tavakból történő vízkivételek közül általában a kisvízi időszakban jelentkező öntözés, és – ha van – a halastavak frissvíz igénye, valamint a hűtési célú energetikai vízkivétel lehet kritikus. A jelenlegi engedélyezés alapja az augusztusi 80%-os tartósságú vízhozam és az ún. élővíz különbsége. Az ökológiai szempontok alapján meghatározott „mederben hagyandó vízhozam” az élővíznel általában lényegesen nagyobb érték. Tekintettel arra, hogy az éghajlatváltozás kisvizeket apasztó hatása már most is kimutatható, kisvízfolyásaink hasznosítható hozamának jelentős csökkenésére kell számítani, ezáltal növekszik a vízhiánnyal küzdő, és ezért ökológiai szempontból is érzékeny vízfolyások köré. A VKI szerint a vízfolyások ökológiaiag szükséges minimum hozamának terhére történő vízkivételekre, és ily módon a jó ökológiai állapot szempontjából engedményekre nincs lehetőség. A vízgyűjtő-gazdálkodási tervezés egyik fontos feladata az ökológiai szempontból szükséges, mederben hagyandó vízhozam meghatározása.

A legtöbb vízhasználat meghatározott időszakban, meghatározott biztonsággal rendelkezésre álló vízmennyiséget tud hasznosítani, számukra a mindenkor lefolyásnak csak az a része tekinthető vízkészletnek, amely ezeket az időbeni és biztonsági kritériumokat teljesíti. Hiába van egy vízfolyásban éves átlagban viszonylag jelentős vízhozam, a gazdálkodó számára az a jóval kisebb vízmennyiség lesz a gyakorlatban hasznosítható, amelyet – amikor szüksége van rá – a legszárazabb nyári hónapokban is legfeljebb néhány napos kihagyással a növények öntözésére fordíthat.
Magyarországon a nyári legkisebb lefolyás és az ugyanakkor jelentkező megnövekedett vízigények szempontjából mértékadó augusztus hónapot, és az ezen időszak legalább 80%-ából (legalább 25 napon keresztül) rendelkezésre álló lefolyás értékét, vagyis az augusztusi 80%-os tartósságot tekintjük a hasznosítható vízkészlet jellemzőjének.

A kisvízi lefolyás azonban nem csak a vízhasználók igényeit, hanem a felszíni vízre utalt élővilág életfeltételeit is ki kell, hogy elégítse. Ez utóbbi védelme érdekében a természet védelméről természetes vízjárási körülmények esetén létrejön az ökoszisztémák és az élőhelyi adottságok között, ez utóbbiak közébe beleértve a hidrológiai és medermorfológiai feltételeket is. A vízjárás alakulása természetes körülmények között is előidéz kedvezőtlen állapotokat. Más oldalról, az adott helyen olyan vízi ökoszisztémák fennmaradására lehet számítható, amelyek alkalmazkodni képesek a vízterem közvetlen adottságaitól következő, kisebb-nagyobb gyakorisággal bekövetkező és hosszabb vagy rövidebb ideig tartó kedvezőtlen állapotaihoz.

Habár funkcióját tekintve az ökológiai kisvíz lényegében megfelel a természet védelméről szóló 1996. évi LIII. törvény 18. paragrafusában működő ökológiai vízkészletnek, attól érvényességét tekintve különbözik: az ökológiai kisvíz a vízgyűjtő-gazdálkodási tervezés céljaira került meghatározásra, és az eladott helyen stabilizálódó ökoszisztémák és az élőhelyi adottságok között, ennek sorában körébe beleértve a hidrológiai és medermorfológiai feltételeket is. A vízjárás alakulása természetes körülmények között is előidéz kedvezőtlen állapotokat, amelyek alkalmazkodni képesek a víztér természeti adottságaitól következő, kisebb-nagyobb gyakorisággal bekövetkező és hosszabb vagy rövidebb ideig tartó kedvezőtlen állapotaihoz.

A felszíni vízből történő vízhasználatok számítása céljára szükséges, mivel a különböző vízhasználók vízszolgáltatásukkal (kommunális, ipari, mezőgazdasági, vízügyi szolgálat) egymástól eltérő adatszolgáltatásokat kell teljesíteniük. Az Országos Statisztikai Adatgyűjtési Program (OSAP) keretében a következő adatgyűjtések történnek a felszíni vízkivételkről:

- 1373-as adatlap "A mezőgazdasági vízhasználat és vízszolgáltatás",
- 1694-es adatlap "A felszíni vízkivétel és felszínű vízbevezetések adatai".

Ezen kívül felhasználtuk a vízkészletjárulék beavatásban közölt adatokat is (VKJ adatbázis), valamint a víztestekről a VIZIG-ek által készített adatlapokat, amelyek tartalmazzák az úgynevezett „főművi” vízkivételeket (a VIZIG-ék által üzemeltetett csatornákba emelt vizek). A felszíni vízkivétel táblázatok 2013. évi adatot tartalmaznak, a víztestenkénti összesítéseket a 3-10 melléklet tartalma. A 3-10 térképmelléklet bemutatja vízkivételek víztestenkénti összes mennyiségét és hasznosítását, valamint jelöli a vízhiányos területeket.
3-10. ábra: Felszíni vízkivételek megoszlása használat szerint (2013. évi mennyiségek alapján)

Az összes engedélyezett felszíni vízkivétel 2013-ban a Balaton részvízgyűjtőjén 17,3 Mm³/év nagyságúnak számítjuk.

A vízhasználatok nagyon eltérőek, mind ágazati, mind vízgyűjtő területi oldalát tekintve. Jelen fejezet a vízhasználatok ágazati hasznosításának és a rendelkezésre álló vízkészlet kihasználásának bemutatására törekszik.

A 2013. évi adatok alapján készült elemzés szerint a legnagyobb vízkivételt a kommunális célú vízhasználatok jelentik (65,8%).

3.4.4.2 Ivóvízkivétel felszíni vizekből

3-12. táblázat: Felszíni ivóvízkivétel miatt védett víztestek

<table>
<thead>
<tr>
<th>Tervezési Alegység</th>
<th>Érintett víztest</th>
<th>Felszíni ivóvízkivétel</th>
<th>Termelt víz (em³/év)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neve</td>
<td>VOR</td>
<td>Neve</td>
</tr>
<tr>
<td>4-2</td>
<td>Balaton</td>
<td>AIH049</td>
<td>Fonyód, Zamárdi, Füred, Balatonöszöld, Siófok, Széplak, Balaton</td>
</tr>
</tbody>
</table>

3. fejezet Emberi tevékenységből eredő terhelések és hatások – 79 –
Balaton es üdülőközének ivóvízellátása:

A Balaton üdülőközének vízellátása 3 nagy regionális rendszeren át megtoldott.

♦ Észak-kelet Balatoni Regionális Vízmű

Revfülöptől Balatonfüzftőig tartó területet foglalja magába, 13 települést lát el.

Vízbázisai:
- Balatonfelvidéken lévő helyi karszt vízbázisok,
- felszíni vízkivétel a Balatonból Balatonfűzfőig és Balatonalmádiban,
- valamint a Nyírádi vízbázisból a Nyugat-balatoni RV keresztül is vesz át vizet.

(2013 évi adatok alapján a települések számára felhasználásra átadott vízmennyiség az egyes vízbázisokból a felsoroltaknak megfelelően: 41%; 30%; 29%)

♦ Dél-kelet Balatoni Regionális Vízmű

Balatonkenesétől Balatonöszödig húzódó területet foglalja magába, 26 települést lát el.

Vízbázisai:
- Nagyrész felszíni vízbázisok látják el a rendszer, Siófok, Balatonkenese, Balatonöszöd, melyek közül Siófok állandó üzemben, a két utóbbi felszíni vízmű pedig nyári üzemben működik.
- Ádánd kutak

(2013 évi adatok alapján a kutakból származik a felhasználásra kerülő vízmennyiség 1%-a, 76 %-át adja a Siófoki felszíni tisztító mű, 23%-ot pedig a két nyári üzemben működő felszíni tisztító mű)

♦ Nyugat Balatoni Regionális Vízmű

Balatonszepezdtől Keszthelyen át Balatonöszödig 36 települést lát el.

Vízbázisai:
- Az ÉKBRV-hez hasonlóan, helyi karszt vízbázisok,
- Felszíni víztisztító mű a Balatonra települve Fonyódnál,
- valamint a Nyírádi vízbázisból átvett víz.

(A 2013 évi vízfelhasználás alapján az arányok itt a következők: 9%, helyi vízbázis 3% felszíni és 88%, a nyirádi víz felhasználása)

A települések belterületei mindenütt közüzemi vízellátásba bekapcsoltak.

A KSH 2014-ben megjelent új népszámlálási adati magukban foglalják már az egyéb belterületen és küterületen lakók adatait is. Veszprém megye azon területeit figyelembe véve, melyek a Balaton vízgyűjtőjére esnek, az egyéb belterületen és küterületen élők aránya 4-5 %. Ezek a helyeken előfordulhat, hogy nincs minden állandó lakos közüzemi ellátásba kapcsolva, így nem mondhatjuk, hogy az ivóvízellátás 100%-os. Hasonló a helyzet a többi vízgyűjtővel érintett megyében is.

Fontosnak tekintettük valamely víztesten a vízkivételt, ha az a mértékdad augusztusi természeti lefolyás 5%-át meghaladta.

A hasznosított víz jelentős része — általában 5-10%-os párolgási veszteség árán — bevezetésre kerül valamelyik vízfolyásba. (Kivételt képez az öntözési célból kivett víz, amely okszerű felhasználás esetén teljes mértékben evapotranspirációra fordítódik.) A szennyvíz bevezetések
döntő többsége kommunális eredetű, lényegesen kevesebb az ipari szennyvizek és használtvizek bevezetési helyek száma, jóllehet volumenük, ez utóbbiak közé számítva az erőművi hűtővíz kibocsájtásokat is, mintegy hatszorosa a kommunális kibocsájtásnak.

A 2013. évi adatok tükrében a Balaton részvízgyűjtőjébe vezetett kommunális-, ipari- és egyéb szennyvízbevezetések mennyisége 34,11 Mm³/év.

3-11. ábra: Felszíni vízbevezetések megoszlása használat szerint (2013. évi mennyiségek alapján)

Különösen a kommunális szennyvíz bevezetésekre igaz, hogy általában nem abba a vízfolyásba kerül ahonnannal kivették, már csak azért sem, mert a kommunális szennyvíz több mint fele felszín alatti vízkitermelés révén került felhasználásra. A kommunális szennyvíz az esetek kétharmadában valamely kisvízfolyásba kerül bevezetésre, gyakran megsokszorozva a kisebb hozamú patakok lefolyását, a természetes vízjárástól eltérően alakuló hidrológiai helyzetek pedig a természettestől eltérő életfeltételeket hoznak létre az élővilág számára.

Fontosnak tekintettük valamely víztesten a vízbevezetést, ha az a mértékedő augusztusi természetes lefolyás 10%-át meghaladta és jelentősnek, ha a növekedés elért az 50%-ot.

3.4.4.3 Felszín alatti vizek mérlege

A Víz Keretirányelv II. melléklete 2.3. pontjában „Az emberi tevékenység felszín alatti vizekre gyakorolt hatásának áttekintése” címén előírja, hogy az adott felszín alatti víztesten belül meg kell határoznia a 10 m³/napnál nagyobb, vagy több mint 50 főt ivővízzel ellátó vízkitermelési pontok helyét, valamint az éves átlagos vízkivétel mértékét.

A felszín alatti vízkivételekről éves adatgyűjtés történik az Országos Statisztikai Adatgyűjtési Program (OSAP) keretében, a 1375 számú „A felszín alatti vízet kitermelő vízkivételek, valamint megfigyelő kutak üzemi figyelési tevékenysége” című adatlapok útján. A tervezés során ezen kívül felhasználtuk a vízkészletjárulék bevallásban (VKJ adatbázis) közölt víztermelő telepenként
összesített mennyiségeket, valamint az egyéb vízjogi üzemeltetési engedélyekben szereplő víztermelési adatokat is, amelyek alapján meghatározható volt a hasznosítás módja, az objektumok vízkivételi cél szerinti besorolása. Az adatszolgáltatások feldolgozásának eredményeként alakult ki az éves felszín alatti vízkivételek adatbázisa.

A felszín alatti vízkivételeknél megkülönböztetünk közvetlen és közvetett vízkivételeket. A közvetlen vízkivételeken belül - a víztermelő kutak adatai mellett - a felszín alatti vízkészletet csökkentő, illetve a készletet nem csökkentő vízhasználatakat is nyilvántartjuk. Utóbbi vízhasználatak közé soroljuk a parti szűrésű vízkivételek felszíni vízből pótlódó részét, a kitermelt vízvet visszatápláló objektumokat (talajvízdúsító medence, vízvisszasajtoló kút), és a kilépő forrásokra települt vízműveket, amelyeket a 3-13. táblázat tartalmaz a területileg érintett víztest típusonként összegezve.

3-13. táblázat: Felszín alatti vízkészlet nem csökkentő vízhasználatai (2008-2013. évi átlag, ezer m³/év)

<table>
<thead>
<tr>
<th>Víztest típus</th>
<th>Visszatáplálás</th>
<th>parti szűrésű felszíni vízkivétel</th>
<th>forrás vízművek hozama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>talajvízdúsítás felszín vízzel</td>
<td>visszasajtolás (felszín alatti víz)</td>
<td></td>
</tr>
<tr>
<td>karszt</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>termáklíkarszt</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sekély hegyvidéki</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hegyvidéki</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sekély porózus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>porózus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>porózus termál</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Összes vízhasználat</td>
<td>0</td>
<td>0</td>
<td>1348</td>
</tr>
</tbody>
</table>

A felszíni és felszín alatti, vegyes eredetű vízet termelő parti szűrésű vízkivételekeket ezen a részvízgyűjtőn nem kell külön foglalkozunk, mivel nem jellemző ez a víztípus a területen.

A talajvízdúsítási célú folyóvíz kivételekre, valamint vízvisszatáplálással sem találkozhatunk a Balaton részvízgyűjtőn. Az itt megjelenő forrás vízművek szabadon elfolyó hozamát nem tekintjük felszín alatti vízkivételnek, mivel a vízelvétel ebben az esetben is a felszíni víztől történik. Azaz az emberi tevékenység által okozott terhelés a felszín alatti vízterhelés mérlegében, mint „kiadás” vesszük figyelembe, szemben például a beszivárgással, amit „bevételnek” tekintünk. A felszín alatti
objektumból származó felszíni vízkivétel tájékoztatásképpen kerül közlésre a felszín alatti vízmérleg táblázatokban.

A felszín alatti vízkészletet csökkentő közvetlen vízkivételeket a vízfelhasználás típusa szerint csoportosítva, víztestenként összegeztük. A felszín alatti víztermeléseket ivóvíz, ipari, energetikai, öntözés, mezőgazdasági egyéb, fürdő/gyógyászati, egyéb célú, és az engedély nélküli (utóbbi becsült mennyiség) vízhasználati kategóriákba soroltuk.

Az egyes víztestek közvetlen vízkivételeinek és a visszavezetések adatait a 3-11 melléklet tartalmazza. Az összegzett vízkivételek – parti szűrés és a forrás vízművek adataival kiegészítve – a 3-14. táblázatban szerepelnek.

3-14. táblázat: Felszín alatti víz közvetlen vízkivételek vízhasználatok szerinti megoszlása (2008-2013. évi átlag, ezer m³/év)

<table>
<thead>
<tr>
<th>Víztest típus</th>
<th>ivóvíz</th>
<th>ipari</th>
<th>energetikai</th>
<th>húnyászati</th>
<th>öntözés</th>
<th>mezőgazdasági</th>
<th>fürdő, gyógyászati</th>
<th>egyéb</th>
<th>engedély nélküli</th>
<th>összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>parti szűrés (felszíni víz) (-)</td>
<td>0</td>
</tr>
<tr>
<td>forrás vízművek hozama (-)</td>
<td>1348</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1348</td>
</tr>
<tr>
<td>karszt</td>
<td>1861 (8418)</td>
<td>194 (221)</td>
<td>0</td>
<td>0</td>
<td>15 (10)</td>
<td>13 (2)</td>
<td>0 (25)</td>
<td>108 (56)</td>
<td>0</td>
<td>2191 (8732)</td>
</tr>
<tr>
<td>termálkarszt</td>
<td>335 (170)</td>
<td>0</td>
<td>112 (94)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1872 (1293)</td>
<td>0</td>
<td>0</td>
<td>2319 (1557)</td>
</tr>
<tr>
<td>sekély hegyvidéki</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>345</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>hegyvidéki</td>
<td>343</td>
<td>86</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>473</td>
</tr>
<tr>
<td>sekély porózus</td>
<td>236</td>
<td>82</td>
<td>0</td>
<td>9</td>
<td>86</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>1636</td>
<td>2119</td>
</tr>
<tr>
<td>porózus</td>
<td>10117</td>
<td>458</td>
<td>0</td>
<td>0</td>
<td>476</td>
<td>94</td>
<td>518</td>
<td>1242</td>
<td>177</td>
<td>13081</td>
</tr>
<tr>
<td>porózus termál</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(532)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vízkivédel összesen</td>
<td>12891</td>
<td>822</td>
<td>112</td>
<td>13</td>
<td>579</td>
<td>108</td>
<td>2390</td>
<td>1508</td>
<td>2157</td>
<td>20582</td>
</tr>
<tr>
<td>parti szűrés és források nélkül</td>
<td>14238</td>
<td>822</td>
<td>112</td>
<td>13</td>
<td>579</td>
<td>108</td>
<td>2390</td>
<td>1508</td>
<td>2157</td>
<td>21929</td>
</tr>
</tbody>
</table>

A porózus, a hegyvidéki és a sekély porózus valamint a sekély hegyvidéki víztestek határa sok esetben nagy vonalakban követi a részvízgyűjtő határait. Ellenben a porózus termál és a karszt víztestek (hideg és termál) jelentősen túlnyúlnak az alegységek, részvízgyűjtők határán. A felszín alatti víztestek részletesebb vizsgálatára, minősítésére annál az alegységnél/részvízgyűjtőnél kerül sor, melyhez a területének legnagyobb hányada esik. A víztesten jelentkező összes vízkivétel – függetlenül attól, hogy a víztest egy része esetleg átnyúlik más alegység/részvízgyűjtő területére annál a tervezési területnél jelentkezik, amelyhez a víztestet rendelték.
A táblázatban zárójeleken közölt vízkivételi adatok a Balaton részvízgyűjtő határán belüli tényleges víztermelések. Számottevő az eltérés a karszt víztestek esetében, hiszen pl. k.4.1 „Dunántúli-középhegység - Hévíz-, Tapolcai-, Tapolcafő-források vízgyűjtője” megnevezésű víztesten a Balaton részvízgyűjtő területén igen jelentős vízkivételek találhatók (pl. a DRV Zrt. Nyugat-Balatoni Regionális Vízművének nyirádi, balatongyöröki, cserszegtomaji, gyenesdiási, keszhelyi, vonyarcvashegyi víztermelései), viszont a karszt víztest maga a Marcal alegységhez, a Duna részvízgyűjtőhöz tartozik.

A porózus termál víztestből történő 532 m3/év vízkivétel (Zalakaros, Zalaegerszeg, Marcali, Buzsák, Galambok, stb termálfürdőinek vízkivétele) a pt.3.1 „Dél-Dunántúl” megnevezésű porózus termálvíztesthez kapcsolódik, mely víztest a Dráva részvízgyűjtőhöz tartozik.

3-12. ábra: Felszín alatti vízkivételek a víztest típusok szerint

A közvetlen felszín alatti vízkivételeket vízhasználat és víztest típus szerinti csoportosításban a 3-10., 3-11. és 3-12. ábra mutatja. A vízhasználati besorolások tekintetében az első vízgyűjtő-gazdálkodási terüven szereplő értékeket a jelenlegi tervezési időszakban feldolgozásra került megnövekedett adatmennyiség, illetve az objektum- és víztest szintű adat felülvizsgálat több esetben módosította.
A felszín alatti víztest típusokat vizsgálva megállapítható, hogy az összes vízkivételt tekintve a legnagyobb mennyiségű vízkivétel a porózus víztestekből történik, majd a karszt, porózus termál következik a sorban. Az ivóvíz igen magas aránya minden víztest típusban meghatározó, kivéve a 30 °C-nál magasabb hőmérsékletű (termálkarszt, porózus termál) víztesteket, ahol a fürdő- és az energetikai célú vízkivétel a domináns.

3-14. ábra: Felszín alatti vízkivételek a használat célja szerint 2008-2013 között

A felszín alatti vízhányatlannak hivatalos nyilvántartása alapján az ivóvízkivételek arányához (82%) képest a többi vízhasználási cél elenyésző, ezek közül 10% a fürdő/gyógyászati célú
víztermelés, 4% az ipari és az egyéb mezőgazdasági vízkivételek aránya, továbbá 1-3%-ot tesznek ki az öntözősi, az egyéb mezőgazdasági, az energetikai, az egyéb célú és a bányászati vízkivételek.

A vízkivételek minősítése a környezeti hatás vizsgálati és az egységes környezethasználati engedélyezési eljárásról szóló 314/2005. (XII. 25.) Korm. rendelet felszín alatti igénybevételekre vonatkozó előírásai (1. melléklet 34. pont és 3. melléklet 80. pont) alapján történt. Az egyedi objektumok és objektumcsoportok össztermelése alapján, a Korm. rendelet 1. melléklet 34. pontban meghatározott 5 millió m³/nap mennyiségénél nagyobb, azaz környezeti hatás vizsgálata kötelezett vízkivételek jelentős terhelés minősítést kaptak. A hivatkozott rendelet 3. melléklet 80. pontban a víztípusonként meghatározott mennyiségi korlátot meghaladó további objektumcsoportok vízkivételét pedig fontos terhelésnek tekintettük. A Balaton részvízgyűjtőhöz rendelt felszín alatti víztestek vízkivételei közül egyik sem jelentős minősítésű, mindössze 2 víztesten tartozik 6 db fontos vízkivétel a területhez (ld. 3-11. melléklet). Meg kell azonban említeni a Marcal alegységhez, a Duna részvízgyűjtőhöz tartozó, jelentős minősítést kapott k.4.1 „Dunántúli-középhegység - Hévízi-, Tapolcai- Tapolcafő-források vízgyűjtője” megnevezésű víztestet, mely – mint már szó volt róla – átnyúlik a Balaton részvízgyűjtő területére.

Ivóvízellátás

Hazánkban a legnagyobb arányban az ivóvíz biztosítása igényli a felszín alatti vizet. A részvízgyűjtőn a felszín alatti objektumokból kitermelt vízmennyiség közel 82%-a hasznosul ivóvízellátási célra.

Az ivóvízkivételek közel azonos arányban kerülnek kitermelésre a porózus víztestekből és a karsztos víztestekből (45 és 42%). A forrás vízművek 10%-os részesedése mellett a többi víztestből kitermelt mennyiség mindössze 2-3%-ot tesz ki. A részvízgyűjtőhöz tartozó víztestek közül a p.4.1.1 „Zala-vízgyűjtő” víztesthez 1 db fontos minősítésű vízkivétel (Zalaegerszeg ivóvízellátás) kapcsolódik.

Fürdő és gyógyászati célú kitermelések

A fürdők által felhasznált jelentős mennyiségű vízkivétel legnagyobbbrészt a termál- és karsztfürdők közé kerül. A fürdők az ivóvízet a fennmaradó mennyiségben használják maguk területének fürdő és gyógybekezdéseinek előírásainak megfelelően. Az összes víztest száma 77, mely közül 55%-a termálvíztest, 37%-a karsztvíztest és 8%-a kisméretű víztest. Az évente átlagosan összesen 1,8 millió m³ víztermelés mellett a termálvíztestek közül 75%-a a fennmaradó mennyiségben hasznosul, a két víztest típusból közvetlenül termelési idősközben a felszín alatti víztestek közül 75%-a a későbbi víztermelés mellett a termálvíztestek közül 75%-a a fennmaradó mennyiségben hasznosul.
A Dunántúli-középhegységben a bányászati vízkivételek csökkenő tendenciát mutatnak. A múltbeli vízkivételek hatása a részvízgyűjtőt is érintő, a „Dunántúli-középhegység - Hévízi-, Tapolcai-,
Tapolcafő-források vízgyűjtője” elnevezésű k.4.1 víztesten tapasztalható, amely kihat a Hévízi-tó forrást tápláló kt.4.1 „Nyugat-dunántúli termálkarszt” víztestre. A k.4.1 víztest az ivóvíz mellett a bányászati vízhasználatok miatt is jelentős minősítést kapott.

A tervezési időszakban a karsztvíztest területén – a részvízgyűjtőn kívül eső, halimbai – bányavízkivételek mennyisége tovább csökkent, melynek eredményeként a karsztvíz-készletek regenerálódása folytatódik.

A fluidum (kőolaj, földgáz) 2 termál (a kt.1.7 „Közép-dunántúli termálkarszt” és a pt.3.1 „Délnyugat-Dunántúl” porózus termál) víztestet érint. A tervezési időszakban a 2013-ig megállapított bányaterek száma 96-ról 105-re változott, melyben szerepe van a külföldi befektetők megjelenésének a kutatás és termelésben (bányakoncessziók). A víztermelésére és a víztestek mennyiségi állapotára negatív hatással lehet a túlzott nyersanyag kitermelés, mivel a csökkenő rétegnyomás a termálvízadók nyomásszintjét is megváltoztatja. A porózus termál víztestek általában nagy méretűek és jelentős statikus készlettel rendelkeznek, ezért a vízkivételek hatása jellemzően nem mutatható ki a készlet kihasználtsága alapján történő értékelésen. Mivel azonban a víztestek utánpótlódása korlátozott, a mennyiségi problémák (lokális) vízszint süllyedésként jelentkezhetnek.

Ipari, energetikai, mezőgazdasági és egyéb célú kitermelések

A víztestek közvetlen ipari vízkivételek miatti terhelése jelentősen kisebb mennyiségű, mint a közműves vízellátásé, amely viszont tartalmazza az ipari üzemeknek szolgáltatott vízmennyiséget is. Az ipari vízhasználat a porózus és a karszt víztesteken a legjelentősebb, de érinti a hegyvidéki és a sekély porózus víztestek vízadót is. Ipari vízként a tevékenység céljának megfelelően változatos vízvégi összetételű vizeket használnak az egyes iparágak, azonban az élelmiszeriparban jelentkező jó minőségű, emberi fogyasztásra alkalmas (ivóvíz) vízigény gazdaságosan a felszín alatti vízkészletből elégtethető ki. Fontos minősítésű vízkivétel található ebben a kategóriában Zalaszentgróton, amely a kt.4.1 „Nyugat-dunántúli termálkarszt” víztesthez kapcsolódik.

A részvízgyűjtő területén az energetikai célú vízkivétel, a kitermelt hévizek hőtartalmának fűtési céljának hasznosítása, geotermikus közműrendszerként üzemeltetése még nem jellemző.

A felszín alatti vízkivételek összesen 1%-át teszik ki a nyilvántartott öntözési célú vízhasználatok, a növények vízigényének kielégítésére kitermelt víz mennyisége jóval magasabb a hivatalos adatbázisba bekerült értékekkel. Az engedély nélküli öntözővíz-kivételek a teljes vízmérlegben a megfelelő külön kategóriában szerepelnek.

Engedély nélküli vízkivételek
Az európai viszonylatban is kiemelkedő jelentőségű felszín alatti vízkészletünkre alapozott víztermelések az ezredforduló után országosan stabilizálódhattak, de általános probléma – különösen az Alföldön (sekély porózus, porózus, sekély hegyvidéki víztesteken) – a jelentős mértékű engedély nélküli (víziügyi nyilvántartásban nem szereplő) vízkivétel. Ezek a termelő objektumok egyrészt nem vízjogi engedélyköteles víztermelések (500 m³/év-nél kisebb víztermelésű), jegyzői engedélyes kiskutak, melyekről központi adatbázis hiánynál mennyiségi információ nem szerezhető be. Másrészt szintén csak közvetett módon becsülhető a teljesen illegális – pl. az idényjellegű, öntöző célú vízhasználat – vízhasználat. E víztermelések nem csupán mennyiségi problémákat okozhatnak, hanem szennyezési veszélyt is jelenthetnek a közepes mélységű vízadókra. Az engedély nélküli vízkivételek meghatározására az első vízgyűjtő-gazdálkodási tervben készült szakértői becslés eredményei használtak fel, amely a közműves ellátottság, a település szerkezet és a hidrogeológiai adottságok figyelembe vételével készült, de függetlenül attól, hogy a vízkivétel milyen célt szolgál. A becsléssel készült engedély nélküli termelések 2008-2013. között, az összes közvetlen vízkivétel arányában közeli a 10%-ot (2158 em³/év), az egyes víztestekre vonatkozó részletes mennyiségi adatok a mellékletekben szerepelnek.

Vízvisszatáplálás a részegység területén nem fordul elő, sem talajvízdúsítás, sem energetikai vízkivételnél vízvisszasajtolás formájában.

A termálvíz visszasajtolás a fluidumbányászati tevékenységhez kapcsolódik, melynek során a termelvényről leválasztott kísérővizet sajtolják vissza a rétegebe. Közvetett vízbetáplálást okoznak továbbá a duzzasztott felszíni vizek, vagy az öntözőcsatornák, amelyek talajvízdúsító hatását - monitoring adatok hiányában - csak becsléssel lehet meghatározni. A tervezési területen nem jellemző ez a hatás.

A közvetett vízkivételek a közvetlen vízkivételekhez hasonló hatásokkal járó vízelvonásokat jelenthetnek, mint például a belvíz- és egyéb talajvizet megcsapoló csatornák által elvezetett vízmennyiség, az elterelt felszíni víz alacsony vízszintje miatt növekvő drénező hatás, a nagy felületű bányavatok többletpárolgása, és az eredetileg füves területek beerdősítése.

A belvízelvezetés közvetett vízkivételeinek hatása víztest szinten az előző vízgyűjtő-gazdálkodási tervben került szakértői becsléssel meghatározásra. Ez alapján a részvízgyűjtőn 1 sekély felszín alatti víztestnél kell azaz számolni, hogy a belvízelvezetés negatív hatással lehet a vízkészletre, ez a Berek területét is magába foglaló sp.4.3.2 „Balaton a Berekkel“ megnevezésű víztest.

Az állapotértékelésben a felszín közeli tőzeg, lápföld és lápimész bányák, valamint a kavics-, homok- és agyagbányák közvetett vízkivételével (megnövekedett evapotranspiráció), a mesterséges bányavatok többletpárolgásával is számolni kell. Ez azonban nem számottevő a tervezési területen.

Az erdők felszín alatti vízkészletekre gyakorolt hatását csak részletes hidrológiai számításokkal lehet meghatározni. Az erdő fejlődése függ a termőhelyi adottságoktól: klimatikus tényezők, talajtípus és hidrológiai jellemzők, ugyanakkor lokálisan az erdő át is alakítja azokat így különösen a hidrológiai paramétereket, mint például a beszivárgást, a lefolyást, az evapotranspirációt.

A közvetlen és közvetett vízkivételek jelentősen meghatározzák a víztestek állapotát, annak viszonyában, hogy azok milyen arányúak a hasznosítható készlethez mértén.

A vízkivételek egyes sekély porózus víztestekben talajvízvízzint-süllyedést, a termál víztestekben nyomás- és hőmérséklet csökkenést eredményeznek (visszasajtolással lelassítható, megállítható).
A vízkivételek hatására források apadhatnak el, vagy eredeti természetes hozamuk lecsökkenhet. Jelentős hatást okoz a felszín alatti víz szintjének csökkenése, amennyiben az adott víztest kisvízfolyást, vagy az érthető fontos a kisvízfolyások és a sekély tavak esetében, mert csapadékmentes időszakban ez adja egyetlen forrasukat. A felszín alatti víz az alaphozam-, tavaknál a területváltozások okait még tovább kell vizsgálni, mivel azt az éghajlatváltozás, a tájhasználat megváltoz(t)ása, a közvetlen és közvetett vízkivételek külön-külön és ezek kombinációi is okozhatják. A felszín alatti vízkivételek befolyásolhatják a felszín alatti vízfolyam függő ökoszisztémák (FAVÖKO) életminőségét is.

A mennyiségi állapot változása mellett a víztermelések hatására vízminőségi változások is bekövetkezhettek, amennyiben az olyan mértékű, hogy átalakítja az áramlási rendszert. Ebbe a körbe tartozik a termálvizek túlhasználata is, amely főként lokálisan, de akár regionális méretekben is csökkentheti a termálvíz hőmérsékletét, illetve ronthatja kémiai összetételét.

3.5 Egyéb terhelések
Az egyéb terhelések között azokat az emberi hatásokat mutatjuk be, amelyek összetettségük miatt nem sorolhatók be az előző fejezetekbe.

3.5.1 Közlekedés
A közlekedési hálózat közvetlen környezeti hatása vonalszerűen jelentkezik, s e hatás intenzitása a közlekedési tevékenység jellemzőitől (alázgazat, műszaki állapot, stb.) és a helyszíntől (lakott terület vagy azon kívüli) is függ. A közlekedési rendszerek fejlettsége kihat a terület (vízgyűjtő) terhelési szintjére, mivel befolyásolja az emberek mobilitását. Másrészt a közlekedési csomópontok (logisztikai és szolgáltató területek, pályaudvarok, repülőterek, kikötők) pontszerűen fejlik ki környezeti hatásaikat, ahol ezek igen koncentráltan jelentkeznek.

A jelentős vonalas létesítmények és pontszerű közlekedési csomópontok elhelyezkedését 3-15. térképmelléken mutatjuk be.

A közlekedési létesítmények elsősorban balesetsszerű szennyezések okozása miatt veszélyesek a vizekre (3.2.3.3 fejezetet). Hazánkban azonban nem hagyható figyelmen kívül, hogy a járművek – legyen az vízi, közúti, vagy vasúti – műszaki állapota semmindig megfelelő a környezetbarát működéshez. A közlekedés kibocsátásait, légszennyezésen keresztül közvetten, valamint a csuszámszabályozásra használt (sózó) anyagok diffúz vízszennyező hatásait a 3.2.2 Diffúz szennyzésforrások fejezet részletesen tárgyalja. A logisztikai és kiszolgáló területek veszélyeit elsősorban a 3.2.1.4 fejezet alatt tárgyalt szennyezett területekről rész mutatja be, ugyanis számos felszín alatti víz kármentesítési terület köthető közlekedési létesítményhez, pl. üzemanyag tároló, lefejtő, vagy feladó működésére, illetve közlekedési vállalatok telephelyei, kikötői, gépüzemei, garázsai, közforgalmú benzinkutak, stb.

Hajózás
A hajózás a VKI szerint olyan emberi tevékenység, melynek negatív ökológiai hatásait az adott állam kezeli, azaz eldönti, hogy támogatja-e hajózás fenntartását, kialakítását, fejlesztését az adott víztérben. Ennek megfelelően a hajózással érintett víztesteket erősen módosított (vagy mesterséges) víztestté lehet nyilvánítani, ezáltal környezeti célkitűzésként a jó ökológiai potenciál teljesítése is megfelelő.
A felszíni víziút osztályokat a 17/2002. (III.7.) KöViM rendelet határozza meg, mely szerint az „I” víziút osztályúak a legkisebb hosszúságú-, szélességű-, merülésű- és hordépességű hajók és kötelékük, a „VII” víziút osztályba pedig a fentiek szerinti legnagyobbakat sorolják be.

A hajózási - káros anyag kibocsátás szempontjából - általában a leginkább környezetkímélő közlekedési módkent emelik ki37, különösen a nagyömegű áruszállítás esetében a vízi szállításnak vannak a legalacsonyabb externális költségei. A hazai közlekedés fejlesztési tervek szerint a kereskedelmi forgalomban cél az eltérő közlekedési módok kombinálása, amelyben jelentős szerepet szánnak a hajózásonak is.

A hajózás biztosítása az érintett víztestek (Balaton) különböző hidromorfológiai megváltozását okozhatják: a hajózóút előírt szélességének és mélységének elérése érdekében a medrek mesterséges kialakítására (pl. partbiztosítások), kimélyítésére, vagy a vízsint szabályozására lehet szükség, a meder rendre kotrása és a kikötőknél a parti sávok átalakítása, a kikötők elsősorban, mint potenciális szennyező források jelentenek veszélyt a vízek állapotára, valamint másodsorban a parti sáv átalakítása, esetleg külön öblözetek kialakítása, a meder kotrása miatt.

3.5.2 Rekreáció

A Vízgyűjtő-gazdálkodási tervezés keretein belül a vízhez kapcsolódó rekreáció (természetes fürdőhelyek, vízi turizmus, horgászat, medencés fürdők) által a felszíni és felszín alatti vizeket érintő terhelésekkel, hatásokkal is foglalkozni kell.

A 78/2008. (IV. 3.) Korm. rendelet meghatározza a fürdővizek kijelölésének elveit: természetes fürdőhelyek kijelölése akkor történhet meg, ha a fürdőzők számának napi átlaga legalább 8 egybefüggő naptári héten várhatóan meghaladja a 100 főt, valamint ha a rendelet szerint szükséges közegészségügyi feltételeknek megfelel. A természetes fürdőhelyek a VKI

37 Közlekedés Operatív Program (KÖZOP)

38 A motoros hajók által keltett hullámzás iránya eltér, energiaja nagyobb, mint a természetes hullámzás.
szempontjából védett területeknek minősülnek, ezért részletesen a 2.3 fejezetben bemutatásra kerülnek.

A természetes fürdőhelyekkel, a fürdővizekkel érintett települések száma viszonylag alacsony, összesen csak 125 településen van kijelölt fürdőhely, amelyek közül a Balaton részvízgyűjtő területére 42 esik.

Habár pontos adatokkal nem rendelkezünk, közismert, hogy természetes fürdőhelynek ki nem jelölt területeket is használnak fürdőzésre. A 2009-től hatályos szabályozásnak megfelelően ezeket a pontokat is természetes fürdőhellyé kell nyilvántartani.

A fürdőhely kialakításával okozott terhelések:

- a part vonalvezetésének megváltoztatása, esetenkénti mederkotrás, illetve mederfeltöltés;
- a partmenti zonáció megváltozása, eltűnése;
- a nád, hínár és egyéb vízinövényzet elterjedésének gátlása.

Fürdőzők által okozott hatások:

- naptej, krémek bemosódása;
- kommunális szennyvíz és szilárd hulladék szennyezés (különösen a nem kijelölt és infrastruktúrával nem ellátott helyeken);
- átlátszóság változása, az üledék felkavarása;
- vízisportok által okozta terhelések (pl. üzemanyag).

3.5.3 Vízi turizmus

A vízi turizmus kiszolgálására létesített kis és közepes kikötők kerültek összegyűjtésre a Közlekedési Hatóságtól kapott információk alapján. Országosan 82 településen találtunk рекреációs célú kikötőt, melyek közül a Balaton részvízgyűjtőn található a legtöbb (32).

A vízi turizmus tekintetében a Balaton, hagyományosan az ország vezető turisztikai, idegenforgalmi körzete, tömeges, szezonális jellegű, vízparti turizmus jellemzi. A Balatonon jelentős szezonális személy- és komphajó forgalom van, de a további fejlődést akadályozza a turizmust és a szabadidő felhasználást szolgáló jacht kikötők kapacitásának elégtelensége. Bövítésre még van lehetőség, ezt támasztja alá, hogy az EU tagországaiban lévő tavak átlagos terheltségét mutató statisztikai adat hektáronként 4 vitorlás hajó, a Balaton esetében ez a szám 0,5 hajó.

A kikötő nyilvántartásban nem szerepelnek a vízitúrázók által kedvelt természetes fövenyek, partok. A nyári időszakban a kajakkal, kenuval, egyéb kézi meghajtású csónakkal történő tűrázók száma sem hanyagolható el, de mivel ezek használtákhoz kiépített kikötőre nincs szükség, így ezekkel itt nem számolhatunk. A kishajó, csónak kikötők, illetve az ismert tűraút vonalak által már közel 70 db település érintett a területen.

A vízi turizmus által okozott terhelések és hatások:

- a part vonalvezetésének megváltoztatása;
- a szükséges mélység biztosítása érdekében lokálisan (túl gyakori) mederkotrás;
a part tagoltságának változása;
a partmenti zonáció megváltozása, eltűnése;
a nád, hínár és egyéb vízinövényzet elterjedésének gátlása;
kommunális szennyezés növekedése (különösen a vízitúrázók által kedvelt, de infrastruktúrával nem ellátott kikötőhelyeken);
üzemanyag szennyezés (azon vizeken, ahol a motoros járművek használata engedélyezett).

3.5.4 Horgászat
A horgásztavaink nagy része mesterséges eredetű (bányatavak és tározók), de számos horgásztársaság hasznosít mentett oldali és hullámtéri holtágot. A Balaton hazánk legjelentősebb horgászvíz. A természetes eredetű vizeken különböző horgászhatásokra, beleértve a főlehetőséget is, hasznosítják mint tárohozó kitermelés céljából.

A Balaton hazánk legjelentősebb horgászvize.

A természetes eredetű vizeken működő horgászati tevékenység az országos állomány negyedét teszik ki. Vizeink minőségét számos helyen ronthatja a horgászhatás hasznosítás.

3.5.5 Medencés fürdőhelyek
A medencés fürdőhelyek a gyógy- wellness-, és élményfürdőket, medencés strandokat jelentik, amelyek érintik felszíni és felszín alatti vizeink állapotát.

Magyarország igen kedvező adottságokkal rendelkezik a magas hőmérsékletű, nagy ásványi anyag tartalmú és gyakran gyógyhatású víztek tekintetében. E vizek összetétele, kevés anyagcsere és magas oxigén tartalma alkalma lehetőséget az ívésen-mintegy 88%-a balneológiai célú hasznosításra.

Olyan nagy hagyományú, világhírű gyógyfürdőkkel rendelkezünk, mint pl. Hévíz, Zalakaros, Kehidakustány, Zalaegerszeg, stb. gyógy- és élményfürdői. Az adottságaink azt eredményezik, hogy a hazai idegenforgalom egyik kulcsfontosságú kitörési területének értékelése a szakemberek a gyógy- wellness turizmus fejlesztésére. Ennek megfelelően, az e területre áramló tökéletes és támogatásos közönségű keretek, a szolgáltatások minősége és eredményessége megfelelő. Az e területen az élményfürdők és a strandok száma közel kétszor olyan gyorsan szaporodik, mint a gyógy és termálfürdői.

A részvízgyűjtő területén a KSH nyilvántartása szerint 39 medencés fürdő volt 2013-ban, ezek többsége vegyes szolgáltatást nyújt, azaz élményfürdő, gyógy-, vagy termálfürdő, strand és
uszoda is kombinálódhat. A gyógy- és wellness turizmus a vizek mennyiségi és minőségi állapotára is hatást gyakorol, azokat negatívan befolyásolhatja. A termálvíz kitermeléssel és hasznosítással kapcsolatos mennyiségi kérdéseket a 3.4.2 fejezetben, míg a felszíni vizeket érő terheléseket a 3.1.1 fejezetben a többi vízhasználattal együtt mutatjuk be.

A kitermelhető melegvíz-készletek már jelentős részben le vannak kötve. Veszélyes és ezért megengedhetetlen a hosszútávú, éves szinten utánpótlódó mennyiségen felül kitermelni ezeket a vizeket, mert különösen a mélységi hővizek igen lassan újulnak meg.

A fürdővizek nem táplálhatók vissza a vízadó rétegekbe, ezért a használt vizeket felszíni befogadókba vezetik. A hő és sótartalom veszélyeztetheti az ökoszisztémát és akadályozhatja az egyéb emberi használatokat is, pl. az öntözővíz hasznosítást.

A fürdővizek nem táplálhatók vissza a vízadó rétegekbe, ezért a használt vizeket felszíni befogadókba vezetik. A hő és sótartalom veszélyeztetheti az ökoszisztémát és akadályozhatja az egyéb emberi használatokat is, pl. az öntözővíz hasznosítást.
4 Monitoring hálózatok és programok

A vizekhez kapcsolódó monitoring olyan rendszeres mintavételi, mérési, vizsgálati, észlelési tevékenységet jelent, mely a felszíni és felszín alatti vizek mennyiségi és minőségi állapotának megállapítását, jellemzését, illetve az állapot rövid, vagy hosszú távú változásának leírását lehetővé teszi.

A Balaton részvízgyűjtő felszíni és felszín alatti vizeket célzó monitoring hálózatainak elemei a mérési és mintavételi helyek, amelyek területi elhelyezkedését a 4-1 – 4-6 térképmellékletek mutatják be.

A monitoringgal kapcsolatos jogszabályok, szabványok, műszaki előírások és útmutatók jegyzékét az OVGT 4-4 melléklet tartalmazza.

4.1 Felszíni vizek

Szinte valamennyi európai országban, így hazánkban is több évtizedes múltra von a felszíni vizek mennyiségi és minőségi jellemzésének. Az EU csatlakozást közvetlenül megelőző időszakban az MSZ 12749:1993 számú nemzeti szabvány definiálta a felszíni vizek vízminőségi vizsgálati és öt osztályos minősítési rendszerét.

Jelentős változást jelentett a felszíni vizek vizsgálatában az Unió előírásainak bevezetése, amely bővítette a vízminőségi és a mennyiségi monitoringhöz kötődő tevékenységet, valamint különbséget tett a monitoring célja és jellege szerint.

4.1.1 A monitoring elemei

A felszíni vizek esetén a monitoring kiterjed az ökológiai és a kémiai állapot szempontjából indikatív biológiai elemek és speciális veszélyes anyagok meghatározására, valamint azokra a fizikai, kémiai paraméterekre és hidromorfológiai jellemzőkre, amelyek az ökológiai állapotot befolyásolják. A felszíni alatti vizeknél a programok a kémiai és a mennyiségi állapot megfigyelését célozzák meg. A védett területeken a felszíni és felszín alatti vizek megfigyelését olyan jellemző egészítik ki, amelyeket az egyes védett terület kialakítását előíró jogszabály határoz meg. A felszíni mennyiségi monitoring hálózat az országos lefolyási jellemzők meghatározásához szükséges törzs- és árvízi állomásokból, helyi jelentőségű üzemeltetésre, és árvízi helyzetben észlelő árvízi szerkezetekből tevődik össze. Vízállást mintegy 1800 állomáson, vízhozamot közül 720 vízhozamos mérnek az országban. A VKI mennyiségi monitoring programokhoz az észlelései azokhoz nagy részét a hosszú ideje működő vízrajzi észlelő hálózat állomásaiból választották ki. A hidromorfológiai mérések mödönként a 4-4 mellékletben felsorolt műszaki előírásokon, alapul (lásd még a 4-1 térképmellékletet.

A felszíni vizek esetén a monitoring kiterjed az ökológiai és a kémiai állapot szempontjából indikatív biológiai elemek és speciális veszélyes anyagok meghatározására, valamint azokra a fizikai, kémiai paraméterekre és hidromorfológiai jellemzőkre, amelyek az ökológiai állapotot befolyásolják. A felszíni alatti vizeknél a programok a kémiai és a mennyiségi állapot megfigyelését célozzák meg. A védett területeken a felszíni és felszín alatti vizek megfigyelését
olyan jellemzők egészítik ki, amelyeket az egyes védett terület kialakítását előíró jogszabály határoz meg.

A VKI monitoring keretében végzett biológiai vizsgálatok a következő élőlénycsoportok minőségi és mennyiségi viszonyaira terjednek ki:

- lebegő életmódot folytató algák (fitoplankton),
- makroszkopikus (szabad szemmel látható) vízi lágyszárú növényzet (makrofita),
- aljzaton, vagy egyéb szilárd felületen bevonatot képző algák (fitobentosz),
- fenéklakó makroszkopikus vízi gerinctelenek (makrogerinctelen, makrozoobentosz), és
- halak.

A biológiai mérések módszertana a 4-4 mellékletben felsorolt szabványokon, valamint nemzetközi és hazai szakértői tapasztalatokon alapul, a biológiai vizsgálatok módszertani útmutatói előlencsoportonként részletesen a 6-1 háttéranyagban találhatóak.

A hidromorfológiai mérések módszertana a 4-4 mellékletben felsorolt műszaki előírásokon, alapul (lásd még a 4-1 térképmellékletet).

A VKI V. melléklete megadja az általános fizikai-kémiai elemek meghatározásához alábbi táblázatban felsorolt „alapkémiai” paramétereket, melyek vizsgálata kötelező:

<table>
<thead>
<tr>
<th>Általános fizikai-kémiai elem</th>
<th>Vizsgált paraméter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hőmérsékleti viszonyok</td>
<td>hőmérséklet</td>
</tr>
<tr>
<td>Oxigén elláttatós viszonyok</td>
<td>oldott oxigén, kémiai oxigénigény (KOI), biológiai oxigénigény (BOI5)</td>
</tr>
<tr>
<td>Sótartalom</td>
<td>fajlagos elektromos vezetőképesség</td>
</tr>
<tr>
<td>Savasodási állapot</td>
<td>pH, lúgosság</td>
</tr>
<tr>
<td>Tápanyag viszonyok</td>
<td>orto-foszfát ion, összes foszfor, ammóniumion, nitrátion, szerves nitrogén, összes nitrogén, a-klorofill</td>
</tr>
<tr>
<td>Átlátszóság (csak tavaknál)</td>
<td>Secchi átlátszóság</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egyéb vizsgálandó elem</th>
<th>Vizsgált paraméter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duna-vízgyűjtő specifikus anyagok</td>
<td>réz, cink, króm és arzén</td>
</tr>
</tbody>
</table>

A kémiai monitoringba sorolt veszélyes anyagok körét és a rájuk vonatkozó környezetminőségi előírásokat (EQS) az Unió központilag és kötelezően meghatározza a Víz Keretirányelv VIII., IX. és X. mellékletében, illetve 2008/105/EK irányelv39 kihirdetésével és módosításával.

4.1.2 Felszíni vizek monitoring programjai

A felsorolt biológiai, hidromorfológiai, fizikai-kémiai és kémiai elemekből a vízfolyás és állóvíz víztestek típusától, valamint az emberi hatások mértékétől függően kialakított felszíni vizek monitoringja két programot és összesen tíz alprogramot tartalmaz. A monitoringhálózat elemeit a 4-1 melléklet sorolja fel, és a 4-1 térképmelléklet mutatja be.

Az értékelési kritériumot elérő számú mérés a biológiát támogató kémia estében 77 víztesten történt. A vízgyűjtő-spektrikus szennyezőkre 41 víztesten, a veszélyes anyagok tekintetében 40 víztesten, a biológiai jellemzőknél pedig 64 víztesten történt megfelelő számú és minőségű vizsgálat.

A medermorfológiai és azokat befolyásoló emberi beavatkozások viszonylag állandóak, így szintén elegendő hatévenként felmérésük. A veszélyes anyagok vizsgálatát csak hatévente egyszer kell végezni, akkor azonban havi gyakoriságu mintákból.

Vízsgálati monitoringot ott működtetnek, ahol ismerethiány felszámolására, vagy rendkívüli esemény következményeinek kivizsgálására, vagy az operatív monitoring ideiglenes helyettesítésére van szükség. Magyarországon évente 150-200 olyan környezeti kárbejelentés történik, amelyet ki kell vizsgálni. A 2010-12 időszak három éves időtartama alatt 203 eseményt történt a Duna vízgyűjtőjén. A bejelentések negyedére olyan komolyabb esemény, hogy kárelhárítás és vízsgálati monitoring működtetése szükséges, évente néhány szennyezés határon túról érkezik. A felszíni vizet éró szénhidrogén-szennyezések java része a Duna medrént éri, az ok: a közlekedő folyami hajók „olajos” fenékvizeket engednek el. A legtöbb szennyezés levonulása, illetve a kárelhárítás csak néhány napig tart, de a legveszélyesebb rendkívüli események időben hosszabb is elhúzódhatnak, gondoljunk a tiszai cianid szennyezésre, a vörösiszap-tragédiára vagy a Rába habzására.

4.2 Felszín alatti vizek

Hazánkban a felszín alatti vizeink vizsgálatára, monitoringja évszázados múltra tekint vissza. Ennek oka, hogy természeti adottságaink eredményeként a felszín alatti vizek állapota különösen fontos számunkra, hiszen más vízhasználatokon túl ivóvízünk több mint 95%-a innen származik (ha a parti szűrést is ide számoljuk).

A vízgyűjtő-gazdálkodási terv elkészítéséhez az állami monitoring mérésekből és az üzem adatszolgáltatásból származó adatokat is felhasználták, mivel csak így lehet térben (három dimenzióban) és időben megfelelően megismerni a felszín alatti vizek állapotát, illetve annak változását.

A felszín alatti vizek mennyiségi monitoringjával „a vízügyi igazgatási szervezet vízrajzi tevékenységéről” szóló 22/1998. (XI. 6.) KHVM rendelet szabályozza. A felszín alatti mennyiségi monitoring hálózat a vízfolyás meghatározásához szükséges törzsállomásokból, helyi jelentőségű üzemű állomásokból, és a távlati vízbázisok megfigyelőkútjaiból tevődik össze. A vízgyűjtő-gazdálkodási terv elkészítéséhez az állami monitoring mérésekből és az üzem adatszolgáltatásból
4. fejezet Monitoring hálózatok és programok

származó adatokat is felhasználták, mivel csak így lehet térben (három dimenzióban!) és időben megfelelően megismerni a felszín alatti vizek állapotát, illetve annak változását.

4.2.1 A monitoring elemei

A felszín alatti vizekre vonatkozó VKI monitoring követelményeket a felszín alatti vizek vizsgálatának egyes szabályairól szóló 30/2004 (XII. 24.) KvVM rendelet foglalja össze. E szerint a felszín alatti monitoring rendszer két alrendszerből épül fel. Az egyiket az állami és önkormányzati felelősségi körbe tartozó, a közérdek mértékével arányban álló részletességű és sűrűségű, ún. területi (feltáró) monitoring alkotja.

A hazai monitoring rendszer másik alrendszerét a környezethasználók által végzett mérések, megfigyelések képezik (környezethasználati monitoring). Ide tartoznak – többek között – a vízművek által végzett mérések, az ipari üzemek, hulladéklerakók, egyéb szennyezőforrások és a szennyezett területek környezetének monitoringja.

4.2.2 Felszín alatti vizek monitoring programjai

A Víz Keretirányelv szerint a felszín alatti vizek esetében is egy feltáró és egy operatív monitoringot programot kell működtetni, de az operatív monitoringot a feltáró monitoring működési időszakai között kell üzemeltetni és a megfigyelési tevékenység hangsúlyozottan a VKI célkitűzéseinek elérését veszélyeztető, azonosított kockázatok felmérésére irányul.

A vízszint mérési program (HUGWP_Q1) keretében 678 kútban mérik a vízszintet. Az észlelések gyakorisága a víztest típusától függ.
A vízhozammérési program (HUGWP_Q2) elsősorban forrásokra vonatkozik, néhány esetben azonban termálkútóból elfolyó vízmennyiség mérésére is szolgál. A részvízgyűjtőn összesen 14 helyen mérnek vízhasamot évente legalább egyszer, vagy a változatosabb vízjárású forrásoknál negyedévente, illetve havonta.

A kémiai feltáró monitoring programok az alábbiak:

A sérülékeny külterületi program (HUGWP_S1) a sekély porózus, hegyvidéki és nyílt hideg karszt víztestekre vonatkozik, ha a monitoring pont környezetében szántó, rét-legelő, erdő, szőlő, vagy gyümölcsös található. A sérülékeny külterületi programban összesen 389 monitoring pont van.

A sérülékeny belterületi program (HUGWP_S2) ugyanazokat a víztest típusokat célozza, csak az ipari területeken, vagy településeken elhelyezkedő kutakban. A programban 91 monitoring pont van, amelyből 18 ipari területen, 59 falusias, 14 pedig városias beépítettségű környezetben található.

A sérülékeny külterületi és belterületi programban összesen 1136 monitoring hely van, amelynek döntő többsége (696 db) sekély porózus víztestet tár fel. A porózus víztestek felső részét szűrózó kutak (191 db) a biztonság kedvéért a sérülékeny programokba lettek besorolva.

A nyílt karsztba fúrt kutak, vagy a mintázott hideg karsztvíz források száma 55, míg a sekély hegyvidéki monitoring pontok 48, a hegyvidékieké pedig csupán 29 darab. A sérülékeny programokban az általános komponensek elemzésére évente kétszer vesznek mintát.
A védett rétegvíz programban (HUGWP_S3) a vízminőségi mintavétel évente csak egy alkalommal történik és csak a legalapvetőbb (kémhatás, sótartalom, összes szerves anyag) jellemző paramétereket vizsgálják. 240 monitoring pont van a védett rétegvíz programban, amelyeknek 85%-a porózus víztestbe fúrt termelőkút.

A hegyvidéki vegyes összetételű, vagy a védett karszt vízadókat feltáró kutak száma elenyésző; 8 illetve 14 db. Hatévenként a védett rétegvíz programban lévő kutaknál is vizsgálni kell a veszélyes anyagokat, különösen a 219 ivóvíztermelő kút esetében.

A termálvíz program (HUGWP_S4) feltáró monitoringja a porózus termál és a meleg vízű karszt víztestekre terjed ki 29 monitoring ponton, hatévenként egyszeri mintavétellel történik, az általános vízminőségi paraméterekre.

A felszín alatti vizek mintázása a monitoring pont típusától függ. A terepi jegyzőkönyv minták az OVGT 4-6 mellékletben találhatók.

Növényvédőszer küszöbérték feletti kimutatása miatt gyenge állapotúnak minősített víztesteken a HUGWP_O3 operatív programot kell alkalmazni, amelyben a víztestek valamennyi monitoring pontján évente egyszer vizsgálni kell a peszticideket, valamint az alap kémia paramétereket a HUGWP_O2 operatív programban meghatározottak szerint. Összesen csak 2 mintavételi helyet kellett kijelölni a Duna bal parti vízgyűjtő - Vác-Budapest víztesten.

A pontszerű szennyezőforrásból származó alifás klórozott szénhidrogének túllépései miatt gyenge állapotúnak minősített víztestek esetében a víztest azon monitoring pontjain kell a HUGWP_O4 operatív programot alkalmazni, melyek a szennyezőforrás hatáskörzetében helyezkednek el (4 pont lett kijelölve a Szekszárd-Bátai- és Kölkedi-öblözet víztesten).

A felszín alatti vizek kémiai és mennyiségi monitoringjának mintavételi helyeit a 4-2 – 4-5 térképmellékletek mutatják be. A 4-2 mellékletben a monitoring programba kijelölt kutak és források listája, valamint a vizsgálati program meghatározása szerepel. A 4-4 melléklet többek között tartalmazza azoknak a jogszabályoknak, szabványoknak és műszaki előírásoknak a listáját is, amelyek a felszín alatti vizek vizsgálatával kapcsolatosak.

4.3 Védett területek

A védett területeknél a felszíni és felszín alatti monitoring programokat kiegészítik olyan jellemzőknek a megfigyelésével, amelyeket az a közösségi joganyag tartalmaz, amely alapján az egyes védett területeket kialakították. A védett területeket az OVGT 2. fejezete mutatja be, ezért ebben a részben kizárólag ezek monitoringjával foglalkozunk. A felszín és felszín alatti vizekkel kapcsolatban lévő védett területeken működtetett monitoring programok listáját a 4-3 melléklet, a mintavételi helyeket a 4-6 térképmelléklet tartalmazza.

Az üzemeltetők által végzett méréseken túl a kormányhivatalok laboratóriumai ellenőrző méréseket végeznek a felszíni ivóvízkivételi helyeknél a 6/2002 (XI. 5.) KvVM rendeletől előírásainak megfelelően. A vízügyi igazgatóságok a távlati ivóvízbázisnak kijelölt védőterületeken belül végeznek monitoring tevékenységet annak érdekében, hogy nyomon kövessék ezeknek a jelenleg még nem hasznosított - ivóvízkészleteknek a mennyiségét és minőségét.

A 4-3 mellékletben felsorolt ivóvízbázis monitoring helyek nem tartalmazzák az összes mintavételi pontot, hanem csak azokat, amelyeket reprezentatív helyként a jelentési monitoringba kijelöltek. Ezen helyek darabszáma összesen 537, amelyből felszíni víz minőségére egy pont, felszín alattira 536 pont vonatkozik, a többi mennyiségi észlelőhely. Az ivóvizek vizsgálatával kapcsolatos további információk a következő honlapon találhatóak: https://www.antsz.hu/ivovizminoseg/ivovizminoseg.

A tápanyag- és nitrátérzékeny területeken monitorozása a mai gyakorlatban már nem jelent külön programot. A felszín alatti vizek vizsgálata általában kiterjed a tápanyag viszonyok monitorozására, így a tápanyag-érzékeny vizeknél a 4.1 fejezetben bemutatott, továbbfejlesztett alap- és feltáró felszín alatti vizes program működtetése elegendő.

A nitratérzékeny területeken a monitoring működtetéséről a „környezet állapotértékeléséhez szükséges monitoring rendszert működtető környezetvédelmi igazgatási szerv” gondoskodik a vizek mezőgazdasági eredetű nitrátcsökkentés szerinti védelméről és azok ellenőrzéséről.
A felszíni vizek esetében az elmúlt ciklusban a feltáró monitoring program felelt meg a „nitrát rendelet” által meghatározott négyévenkénti, havi gyakoriságú mintavételnek és a tápanyagviszonyok vizsgálatának, a jövőben pedig az alap és feltáró monitoring fogja maradéktalanul kielégíteni a nitrát monitoring követelményeit a közben megnövekedett nitrátérzékeny területek ellenére. A nitrátérzékeny területek monitoring programjában 55 felszíni víz mintavételi hely volt az elmúlt ciklusban a részvízgyűjtőn. A felszín alatti víz vizsgálatára a vízkészlet szempontjából jellemző helyek kiválasztását, a mintavételeket szabályos időközökben végzését, valamint a gyakoriság hidrogeológiai adottságoktól és a vízkivétel mennyiségétől való függőségét írja elő a rendelet. 362 olyan felszín alatti kémiai monitoring pont van (2013. évi adat), amely a nitrátérzékeny terület vizsgálatát célozza.

A természetes fürdőhelyek monitoringja számos elemmel egészíti ki a felszíni vizeknél általában alkalmazott méréseket, ilyenek például a kátránymaradék, üveg, műanyag, gumi vagy egyéb hulladék, valamint a kékalgák, a fertőző baktériumok (fekáliás Enterococcus, Escherichia coli).

A természetes fürdőhelyek monitoringjának működtetője a fürdőhely üzemeltetője, tulajdonosa az ellenőrzésért általánosan a területileg illetékes járási kormányhivatal felel. A fürdővizek minőségével kapcsolatban további online információk az ÁNTSZ honlapján találhatóak http://oki.antsz.hu/

A természeti értékei miatt védett területeken a monitoring működtetéséről az adott védett terület monitoringjával kapcsolatos feladatokat.

Az őshonos halak életfeltételeinek biztosítása céljából védett víztest csak egy van a részvízgyűjtőn (Rába), amit kémiai paraméterekre (pl. oxigéntartalom, nitrogénformák, réz, cink, stb.)
5 Vízhasználatok gazdasági elemzése

A vízhasználatok gazdasági elemzése a következő feladatokból állt:

- A vízhasználatok bemutatása és gazdasági jelentőségének értékelése (OVGT 5. fejezet, 5-1. melléklet)
- A vízhasználatok előrejelzése (OVGT 5.1 fejezet és 5-3 melléklet)
- A vízi szolgáltatások költségmegtérülésének értékelése (OVGT 5.2 és 5.3 fejezet, 5-2 melléklet)
- A jelentős vízhasználatok gazdasági feltételeinek értékelése (OVGT 5.5 fejezet és az 5-2 melléklet)

A gazdasági elemzés alapvetően országos szinten készült. A részvízgyűjtő tervben a gazdasági elemzés legfontosabb, a víz-sektorra vonatkozó ex-ante feltételek teljesítéséhez közvetlenül szükséges, a 1121/2014. (III. 6.) Korm. határozat 1. a) és b) pontjai szerinti gazdasági elemzések elkészítésének eredményeit, azaz a vízi-szolgáltatások költségmegtérülésének értékelését foglaljuk össze.

5.1 Víziközmű szolgáltatások költségmegtérülésének értékelése

Az elmúlt húsz évben folyamatosan nőtt a víziközmű ágazat által kiszolgált lakosok száma. 2013-ban már a háztartások 94,4%-a rendelkezik vezetékes ivóvíz ellátással és 75%-a csatorna összeköttetéssel is. A közművű az utóbbi 15 évben folyamatosan csökkent. A szolgáltatás általános színvonalra elkötelező, a beruházási támogatások fókuszában az ivóvízminőség javítása és a csatornahálózat bővítése, valamint a szennyvízkisütés technológiák fejlesztése állt. A 2007-2013 tervezési időszakban a víziközmű-rendszerek fejlesztését célzó, KEOP támogatással megvalósuló fejlesztési beruházások szerződéssel lekötött értéke 627,6 mrd Ft, melyből az ivóvízminőség-javító projektek 146 mrd Ft, a szennyvízkezelési és tisztítási beruházások 481,6 mrd Ft értékben részesedtek. A ROP támogatással megvalósuló szennyvízvezetési projektek szerződéssel lekötött összköltsége 28,8 mrd Ft volt.

A részben még ma is folyamatosan lévő fejlesztések eredményeként 2013-ban a bejuttott szennyvizek 75%-a harmadik fokozaton került tisztításra. Ugyanakkor ez még nem jelenti azt, hogy a tisztítótelepek megfelelnek a 91/271/EGK városi irányelv elvárásainak. 2012. december 31-i állapot szerint az összes agglomeráció mintegy 60 %-a rendelkezett megfelelő szennyvízisütítő teleppel.

Az ivóvízminőség-javító projektek eredményeként pedig 2013 januárjára az ország összes településén biztosított volt az egészséges ivóvízhez történő hozzáférés vagy végleges, vagy átmeneti megoldással.
A 2014-2020 közötti időszakban a KEHOP-ból továbbra is jelentős összegű forrás jut az ágazati fejlesztésekre, ivóvízminőség-javításra. Ezekkel az intézkedésekkel az ivóvíz irányelv és a városi szennyvíz irányelv derogációs követelményei 100%-ban teljesülni fognak.

2010-ben több mint 400 szolgáltató működött az országban különböző szolgáltatási színvonalon és jelentősen eltérő díjakkal. A szétpróbázodottság a kisebb víziközmű-szolgáltatóknál a működési hatékonyság hanyatlásához is vezetett, jelentős forrásokat vontak ki a szektorból. A víziközmű-szolgáltatásról szóló 2011. évi CCIX. törvény (Vkszvt.) integrációról készítette a szolgáltatókat, ennek eredményeként ma már csak 42 víziközmű-szolgáltató működik.

A szolgáltatási díjak országos szinten jelentősen szórók, a víznél 5, a szennyvíznél 8-szoros különbségek léteznek. A lakossági díjakban bonyolult különbséget揀tadhatnak szerepelt a víziközmű-szolgáltatások díjának változatai az adott időszakban.

A megfizethetőség trend szerű alakulása idősor adatok híján azonban nem vizsgálható.

Az ellátottság kiteljesedésével párhuzamosan visszaesett a fogyasztás, elsősorban az emelkedő díjaknak köszönhetően. A lakossági díjakban nagyban befolyásolódott a jövőben a megfizethetőség trend: az ívóvíz szolgáltatásokon lévő költségek sokszorosan nagyobbak a szennyvíz szolgáltatásoknál.

Az irányelvnek megfelelő hosszútávú költségmegtérülés a legtöbb szolgáltatónál hiányzik. A 2013-as díjbevételek az indokolt költségek csupán mintegy 86,3%-ra voltak elegendőek, a hiány 38,3 milliárd Ft volt. A díjra csak a legmagasabb költségszinttel rendelkező települések jogosultak.

A megfizethetőség trendszerű alakulása idősor adatok híján azonban nem vizsgálható.

A közműadó, amellett, hogy nehéz kigazdálkodni, aránytalanul sújtja a kiterjedt hálózattal rendelkező, jellemzően alacsony jövedelmi szintű felhasználói kört kiszolgáló vidéki szolgáltatókat.

A szolgáltatási díjak 2012-ben egy 4,2%-os emelkedést követően befagyasztásra kerültek, majd 2013 közepén a rezsicsökkentés részeként a lakossági díjak 10%-kal csökkenek. A díjszámítás szabályait rögzítő és a Vksztv. költségmegtérülési követelményeit kielégítő díjrendelet egyelőre várat magára.

Megfizethetőség tekintetében Magyarország sereghajtó az OECD országok között. Országos szinten egy átlagos háztartás átlagjövedelmének 2,5%-át költött 2013-ban a víziközmű-szolgáltatásokra.

A megfizethetőség tekintetében Magyarország sereghajtó az OECD országok között. Országos szinten egy átlagos háztartás átlagjövedelmének 2,5%-át költött 2013-ban a víziközmű-szolgáltatásokra.

Az ivóvíz minőségű vizet felhasználó ágazatok, mint például az élelmiszer, ital, dohány-termék gyártása, vegyi anyag, termék gyártása, gyógyszergyártás, szálláshely-szolgáltatás, vendéglátás nagyságrendileg magasabb mértékű vízkezelőjelöléseket fizetnek a saját vízellátás után, mint a közüzemi vízellátás igénybevétele következtében, ami magasabb saját célú igénybevételt jelent részben a szabályozás következményeként.
A jelenlegi ivóvíz törzsvagyon bruttó könyv szerinti értéke 474 milliárd Ft, melynek pótlási értéke ennek többszöröse. Pontos értéket a vagyonértékelések elkészítését követően 2016. évben lehet meghatározni. A szennyvíz törzsvagyon bruttó könyv szerinti értéke 1042 milliárd Ft, amely vagyon azonban átlagban fiatalabb, mint az ivóvíz törzsvagyon. A vagyonértékelés számszerűsíteni fogja azt, ami az ágazati szereplők számára ma is nyilvánvalóvál: az eszközök állagmegőrzéséhez jelentős pótlólagos forrásokra van szükség, akár a szolgáltatás igénybevevőitől, akár külső forrásból.

5.2 Mezőgazdasági vízszolgáltatás

Mezőgazdasági vízszolgáltatás alatt a felszíni vizekből növénytermesztési és halgazdálkodási tevékenységeket lehetővé tevő vízhasználatokat értjük. Az évi 300-400 millió m³ felhasznált vízmennyiség átlagosan kétharmad része halastavi és harmada öntözési célú, de ezek az arányok az időjárás függvényében és régióinként jelentős szóródást mutatnak. A KSH adatai alapján mintegy 400 halastó működik ma Magyarországon, kb. 25 ezer hektár területen.

A vízigények egy összetett, sokcélú vízgazdálkodási rendszereken kerülnek kiszolgálásra. Ez a kompleks infrastruktúra egyszerre nyújt szolgáltatást köz és magán tevékenységek számára, miközben tulajdonosi szempontból is több részre tagolódik.

A mezőgazdasági vízszolgáltatás közelmúltig tartó leépülése már a rendszerváltás előtt megindult és csak az elmúlt néhány évben lassult stagnálássá. A hanyatlás lemérhető a megmozgatott víz csökkenő mennyiségében és az infrastruktúra állagomlásában egyaránt. A felhasználás nagymértékű csökkenése a magas fix költségek miatt jelentősen növeli a szolgáltatás fajlagos költségét a megmaradott felhasználásra vetítve, az emelkedő költségérszint viszont visszaveti a szolgáltatás iránti igényt, ami végső soron egy lefelé tartó öngyorsító folyamatba torkollik. Jelenleg időjárástól függően a mezőgazdasági területek 1-2%-a kerül öntözésre, miközben az öntözésre berendezett területek aránya 3,3%, ami európai összehasonlításban - figyelembe véve az éghajlati viszonyokat is - kifejezetten alacsonynak mondható.

A szolgáltatás visszaesésében szerepet játszott az is, hogy rendszerváltás előtt kiépített infrastruktúra túlméretezett, már tervezése során sem mindenben illeszkedett a valós igényekhez és a mezőgazdasági gazdálkodási közgazdasági racionalitásához. A gazdálkodás peremfeltételeinek változása, mint pl. energiaárak emelkedése, földterületek kárpótlás utáni szabdaltsága vagy az állami szerepvállalás csökkenése sok helyen el lehetetlentette a szolgáltatást. Egyértelmű látszik, hogy a változásokban a víz iránti kereslet nem az öntöző víz igénye, vagy a rendelkezésre álló készletek nagysága, korlátozásága a fő mozgató rugója.

A jelentős kiterjedtségű vízgazdálkodási infrastruktúra összetett funkciókat lát el, ugyanakkor a közösségi szolgáltatások értéke nem számszerűsítható egyértelműen, ezért az érdemlően feltételezhető, hogy a területek kínálói vagy kaptárai, akár közösségi, akár magánszemélyes korlátosságai befolyásolják az öntözési hálózatokat. Egyértelműen látszik, hogy a víz árának növekedése a keresletre van ható, míg az öntözési költségek javulása a hasznosítási eljárásokhoz vonatkozóan szükséges egységenként meghatározott mértéken járhat a megfelelően beépített infrastruktúra szerű megszervezésére.

Az alacsony kihasználtság és stagnáló mezőgazdasági öntözés ellenére az előrejelzések és a tervek a felhasználás bővülését prognosztizálják, tudni kell azonban, hogy noha a jó minőségű agrárterületeken a gazdálkodó szempontjából az öntözés kiépítése egy gazdaságilag megtérülő beruházás lenne, a legnagyobb akadály az öntözés infrastruktúrájának gazdaságos kiépítéséhez szükséges egybefüggő és megfelelő méretű terület megszervezése jelenti.
A vázolt problémákat részben és átmenetileg orvosolta a 115/2014. (IV. 3.) Korm. rendelet, rögzítve az árszabás kereteit és vízmennyiség-arányossá téve a költségek elosztását a térségi vízpótló és vízelosztó művek esetében.

A mezőgazdasági vízszolgáltatás költségmegtérülési mutatója 2012-ben 78 %, 2013-ban 115 % volt. A közvetlenül felmerülő költségeket a szolgáltatásból származó díjbevétel mindkét évben fedezte. A változást a szolgáltatás költségei között szereplő általános vízügyi igazgatási költségeknek az időjárás függvényében hullámzó nagysága okozza.

A környezeti költségeket az infrastruktúra (a csatornák karbantartásának) jó üzemeltetésével lehet alacsonyan tartani, a költségek szintjére becsülettel nem rendelkezünk. A tógazdaságok nagy része ökoszisztéma szolgáltatója a környezetnek és nem fogyasztója.

Mennyiségi korlátokból fakadó erőforrás költségekről általánosságban nem beszélhetünk.

A szolgáltatás megfizethetőségegől nehéz univerzális megállapításokat tenni. Azon gazdálkodó szervezetek számára, amelyek jó minőségű területeken gazdálkodnak és a korábbi beruházásainknak köszönhetően magas ráfordítással, az öntözés által magas többlethozamosan biztosító növényeket termesztenek, intenzív körülmények között önmagában nem okoz jelentős költséget az öntözővíz. Ez azonban csak az öntözést végző gazdálkodások kis részére igaz. A többség esetében, közepes minőségű területen, vagy nem kellően intenzív gazdálkodási módszerekkel egy öntözési beruházás jó esélyel már nem térül meg. Az öntözés hazai lehetőségeit a jelenlegi technológiával csak jóval intenzívebb és hatékonyság orientáltabb gazdálkodás mellett lehet gazdaságosan kihasználni.

A gazdálkodás termelékenységének javítása nélkül a halgazdaságok fizetőképessége az alapvető erőforrásáért minimális. Kisebb piaci zavarok, energia ár növekedés vagy a támogatási feltételek változása esetén kialakulhat egy olyan folyamat, amelyben ép a magasabb hozamok eléréséhez szükséges változó költségek fedezete tűnik el.

Szabályozási javaslatok megalapozásához az elemzés alapján az alábbi fő megállapítások tehetők:

- Az öntözési szolgáltatás kibontakozását az szolgálhatná, ha növelni lehet a vízrendszer használatát a jelenleginél magasabb hozzáadott értékű közösségi és magán célú tevékenységek kiszolgálásán keresztül.
- A vízpótlással elérhető területeken előállítható ökoszisztéma-szolgáltatások a közösség szintjén jelentkező (és kimutatható) hasznokat hoznak, ami egyértelművé tehteti a vízrendszer fenntartásának közérdekét és vele az állami finanszírozás stabilizálását.
- Másrészt a bővülő közösségi célú vízhasznosítások csökkentik a mezőgazdasági vízhasználatokra eső költségek arányát is.

5.3 Saját vízikivételek

A szolgáltatás olyan felszín alatti vizekből történő vízikivétel, melynek célja a saját felhasználás. Megkülönböztetjük a termál víztészetei és az egyéb felszín alatti vízforrásokat.

A termálvíz legfontosabb felhasználása a gyógyászati, rekreációs cél (gyógyfürdők, fürdők, kórházak - 58%), a fűtés (épületek, üvegházak fűtése - 17%) és a közműves vízellátás (ivóvíz szolgáltatás - 21%). 2012-ben kb. 1070 aktív termál kút volt regisztrálva, a mezőgazdasági és
vízellátás célú kutak többsége az Alföldön, a fürdőkutak egyenletesebb eloszlásban az ország nagy részén.

Az energetikai célú termálvíz hasznosítás után 2004 óta visszasajtolási kötelezettség állt fenn, a mezőgazdasági felhasználók (üvegházak) azonban 2012-ben felmentést kaptak ezen kötelezettség alól. Az üvegházi zöldségtermesztők tetemes visszasajtolási költségtől szabadultak meg, ami megnövelheti a termálvíz iránti keresletet. Tekintve, hogy az összes termálvíz kivételétől 1,6%-ától van szó, készlet szempontból egyelőre marginális hatásról beszélhetünk, de a mezőgazdaság fűtési célú termálvíz használatának tendenciáit fontos figyelemmel kísérni, különösen a gyenge állapotú víztestek esetében.

A saját vízkivétel után vízkészlet járulékot kell fizetni, termál készletek kitermelése után pedig bányajáradéket is. Az államnak a saját vízkivételeken belül jelenleg csak felügyeleti és igazgatási költségei merülnek fel a járulék bevételekkel szemben.

5.4 Duzzasztás energetikai célból

A VKI meghatározása alapján vízi szolgáltatásnak minősül a vízienergia termelés, árvízvédelem és hajózási céljából megvalósított duzzasztás. Közülük az energetikai célú használat az, amelynek önmagában is célzattól a vízsgálatra. Magyarországon nincs árvízvédelmi célból épített duzzasztó mű. Kizárólagosan hajózási célból létesített duzzasztásra sincsen példa ugyanis azokon a folyószakaszokon (a Tisza és mellékfolyóin, a Rába és melléfolyóin valamint a Sión), ahol duzzasztó művek vannak nincs a kereskedelmi célú hajózás, vagy jelentéktelen méretű. Az erőművek által termelt villamosenergia a hazai termelés átlagosan 0,6%-a, aminek átlagosan 80%-át a két tisza többcélú duzzasztáson termelt energia adja. A maradékot sok is erőmű szolgáltatja elsősorban a Hernád és a Rába vízrendszerében.

Az 1995. évi LVII. törvény kimondja, hogy a közérdek mértékét meghaladó, illetve a 7. §-ban nem említett tevékenység - vízimunka, vízilétesítmény építése - többletköltségeit az igénylők kötelesek megtéríteni. Ez a lehetőség vonatkozik a duzzasztásra, vízienergia-termelésre, a hajózási út fenntartására, általában a mederfenntartásra, egyéb vízgazdálkodási tevékenységre.

Az energiatermelési célú duzzasztások közvetlen közösségi ráfordításait meghaladják a termelőktől származó bevétellele. A pénzügyi költségmegtérülés aránya 2012-ben 132%, 2013 110% volt.

Közös Megvalósítási Stratégia (Common Implementation Strategy – CIS) keretében a duzzasztások kapcsán megfogalmazott álláspont alapján (CIS 2007) az energiatermelés elegendően indokolhatja egy víztest esetében az erősen módosítottság fenntartását, ugyanakkor a működés feltételének kell tekinteni a Víz Keretirányelv előírásaival való összhangot a kiegészítő létesítmények és működtetési gyakorlat kialakítása során. Ezek közül a legfontosabb szempontok a hosszirányú átépítőművek biztosítása, és az alvíz vízjárás módosítása elsősorban a túl gyors változást okozó csúcsa járatás kérése.
Az OVGT elkészítése óta számos duzzasztáson készült hallépcső a jelenlegi állapot az alábbi számokkal jellemezhető az OVF adatszolgáltatása szerint a megtermelt villamosenergia %-ában:

- Hallépcső van, működik az összes duzzasztás 63 %-án
- Hallépcső van, de nem működik az összes duzzasztás 10 %-án
- Hallépcső van, de nem megfelelően működik az összes duzzasztás 23 %-án
- Nincs hallépcső az összes duzzasztás 4 %-án

A két tiszai többcélú duzzasztás esetében a vízfelhasználás, vízmegosztás során az energia-termelés előtt prioritása van a Tisza-tó, elsősorban ökológiai szempontú vízszint tartásának, a regionális vízátvezetéseknek és a felszíni ivóvízbázisokhoz szükséges vízszintek biztosításának. A rendelkezésre álló információk alapján jelentős intézkedésekre a jó ökológiai potenciál elérése érdekében nincs szükség. A kisebb erőművek esetében hasonló, összegzett információk nem állnak rendelkezésre.
6 A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása

6.1 Felszíni vizek állapotának bemutatása

6.1.1 Ökológiai és kémiai állapotértékelés

A Víz Keretirányelv (továbbiakban: VKI) egységes szemléletű, ökológiai alapkon nyugvó, a vízi ökoszisztémák védelmét és funkciójának megőrzését előtérbe helyező állapotértékelési rendszert vezetett be a felszíni vizek védelme érdekében.

A felszíni vizek állapotának jellemzése a VKI és az Európai Bizottság Közös Végrehajtási Stratégia keretében kidolgozott útmutatóiban előírt részben közösségi, részben nemzeti szinten rögzített módszereket követő, ezek figyelembevételével készültek el a hazai típus- és terhelés-specifikus minősítési rendszerek.

Az ökológiai állapot meghatározása négy minőségi elem figyelembevételével, 5 osztályos skálán (kiváló, jó, mérsékelt, gyenge, rossz), a víztípusra jellemző referencia állapotra viszonyítva történik. A referencia-feltételeket víz-típusonként az 1-2 melléklet mutatja be.

A kémiai állapot két osztályos minősítésen alapul (jó vagy nem éri el a jó állapotot), attól függően, hogy megfelel-e a környezetminőségi határértékeknek.

Az állapotértékelés módszerének részletes leírását az Országos Vízgyűjtő-gazdálkodási Terv 6.1.1 fejezete tartalmazza.

A felszíni vizek állapotértékelésének lépéseit és elemeit az 6-1. ábra mutatja be. A módszertani leírást részleteiben 6-1 (biológia minősítés), és a végleges tervben közlésre kerülő 6-2, 6-3. (fizikai-kémia és kémiai minősítés) és a 6-4 (hidromorfológiai minősítés) háttérvanyok tartalmazzák.

6-1. ábra: A felszíni vizekre vonatkozó minősítési rendszer sémája

Az ökológiai állapot meghatározásához figyelembe vett négy minőségi elem:

- 5 élőlénycsoportra vonatkozó biológiai jellemzők:
 - fitoplankton-mikroszkopikus algák,
 - fitobentosz- bevonatlapú algák és makrofiton-makroszkopikus vizinövényzet,
 - makrozoobenton-makroszkopikus vizi gerinctelenek,
 - halak,
- fizikai-kémiai elemek (szervesanyag, tápanyag, sótartalom és pH),
- egyéb specifikus szennyezőanyagok (fémek),
- hidromorfológiai jellemzők (hosszirányú átjárhatóság, vízjárás és sebességviszonyok, keresztirányú átjárhatóság és a parti sáv állapota, mederviszonyok, felszín alatti vizekkel való kapcsolat).

A VKI a mikroszkopikus algák (fitoplankton) és a makroszkopikus vizinövények csoportját egy biológiai minőségi elemként veszi figyelembe vizinövényzetként.

Az ökológiai állapotértékelés végereedményét a **biológiai minősítés** határozza meg.
A hidromorfológiai minősítés eredményét a kiváló-jó határon, fizikai-kémiai minősítés eredményét a kiváló-jó és jó-mérésékelet ökológiai állapot határán kell figyelembevenni az ECOSTAT útmutató szerint 42.

A specifikus szennyezők koncentráció-értékeinek meg kell felelnie a környezetminőségi határértékeknek (Environmental Quality Standards - EQS) a VKI 1.2.6 szerint.

2010-2012 között új, stresszor-specifikus indexek kerültek kidolgozásra, amelyek alkalmassá váltak az egyes terhelések hatásának kimutatására, ezek részletes leírása a VKI szerinti élőlénycsoportokra a 6-1 háttéranyagban található.

A Víz Keretirányelv a felszíni víztestek integrált állapotát az ökológiai állapot (biológiai, fizikai-kémiai, specifikus szennyezők és hidromorfológiai minőségi elemek kombinációjával) és a kémiai állapot meghatározásával jellemzi, először a mintavételi helyek szintjén, majd víztest-szinten is.

A mesterséges és az erősen módosított állapotú víztestek esetén a minősítés kiindulási alapja a maximális ökológiai potenciál, amely egy hasonló természetes állapotú víztest referencia-állapotából a víztest funkciójának megtartása mellett tett engedményként, vagy a maximálisan végrehajtható intézkedések eredményeként vezethető le, és a potenciális és elérhető legjobb „állapotot” jelenti. A jó ökopotenciál ezzel szemben az a reálisan elérhető környezeti célkitűzés, amit az ökológiaiág hatékony intézkedések végrehajtásával lehet elérni. Az osztályba-sorolás azonos felbontású, csak az ökológiai „állapot” helyett a megfelelő szintű „potenciál” kifejezést kell alkalmazni.

6.1.2 Felszíni víztestek ökológiai és kémiai állapota

6.1.2.1 Felszíni víztestek ökológiai állapota jellemzése

Alkalmazott módszerek

A biológiai minőségi elemek az ökológiai állapot legmeghatározóbb elemei, amelyek az öt osztályos minősítés végző eredményét adják, ha a kiváló-jó, jó-mérésékelet határon a hidromorfológiai és fizikai-kémiai elemek nem mutatnak rosszabb állapotot.

A fizikai és kémiai jellemzők alapján történő minősítés az ökológiai állapot támogató elemei között az emberi hatások okozta szennyezőanyag terheléseket jelenlétét mutatja.

A vizsgált elemek leírását és az alkalmazott módszert (felhasznált adatok köre, adatellenőrzés, osztályhatárok megállapítása) az Országos Vízgyűjtő-gazdálkodási Terv 6.1.2.1 fejezete tartalmazza.

Eredmények
Az ökológiai állapot jellemzését a 2009-2012 közötti időszak VKI monitoring eredményei, valamint kiegészítő jelleggel egyéb kutatások, projektek VKI kompatibilis, hazai módszernek megfelelő adatai alapján végeztük.

A feltározó és az egyes operatív monitoring alprogramok vizsgált biológiai, fizikai-kémiai és kémiai elemeit és ezek alprogramonkénti gyakoriságát, a mintavételi pontok helyét 4-1 mellékletben mutatjuk be.

A Balaton vízgyűjtő területe monitorozás tekintetében a legjobban lefedett hazai részvízgyűjtőnk: a víztestek 90%-ról áll rendelkezés monitoring adat. A kiváló és jó ökológiai állapotú vizek aránya e részvízgyűjtőn a legmagasabb, 12%. A mérsékelt ökológiai állapotú vizeké az országos átlag közeli 36%: A legkedvezőtlenebb gyenge és rossz ökológiai állapotú vizek aránya 42%.

A részvízgyűjtő vizeinek relatíve jobb ökológiai állapota nem véletlen, és nem a sajátos morfológiai adottságok eredménye, hanem annak a több évtizedede zajló intézkedéseknek köszönhető, ami a Balaton és vízgyűjtőjé vízminőségének javítására irányult.

A Balatonon az eutrofizáció első jeleit már az ’50-es években megfigyelték. Az üdülés és az idegenforgalom rohamos fejlődése, az ivóvízellátás és csatornázás fejlesztése, az intenzív mezőgazdaság, műtrágyázás és nagyüzemi állattartás hatása, valamint a tóparti települések fejlődése a ’70-es évektől kezdve meggyorsította a tó –hosszabb távon természetes viszonyok között is bekövetkező–előregedését és kedvezőtlennül befolyásolta a tó vízminőségét.

Megnövekedett a tó külső- vízgyűjtőről származó tápanyag terhelése, amely a belső terhelés növekedését, a tápanyagok felhalmozódását idézte elő. Ennek következtében nagymértékű eutrofizációs folyamat indult meg, amely különösen a tó nyugati, Keszthelyi-medencében volt intenzív.

Halpusztulások, majd 1994-ben a tó egészére kiterjedt algavirágzás (Cylindrospermopsis raciborskii fonalas cianobaktérium) és hipertróf állapot volt jellemző.

A kormányzati intézkedések, környezetvédelmi beavatkozások, beruházások és a gazdálkodási módok változása következtében a tó és vízgyűjtőjének környezeti állapota számtettevő mértékben javult az elmúlt évtizedekben:
- csökkent a műtrágya felhasználás,
- megszűnt a vízgyűjtőn az intenzív állattartás,
- jelentős csatornázási, szennyvíztisztítási beruházások valósultak meg: ahol a topográfiai viszonyok lehetővé tették kivezetés a vízgyűjtőről a szennyvizet vagy bevezették a foszfor-eltávolítási fokozatot, növelték az üzemek kapacitását (Siófok, Balatonlelle, Marcali, Keszthely, Révfülöp, Nemegyőcs),
- jelentősen előrehaladt a hulladékgazdálkodás reformja,
- befeszezdött a Kis-Balaton I-II. ütem kialakítása, amely a kutatások szerint jelentős hordalék- és tápanyag-csökkentő szűrő-funkciót lát el a Zala felől Keszthelyi-öböle érkező felszíni vizek tekintetében, és
- megtörtént a nád-pusztulás okainak feltárása és zajlik a nádállományok rendszeres fenntartása.
A befolyók ökológiai állapota döntő részben nem éri el a jó ökológiai állapothoz szükséges feltételeket, de ennek ellenére a Balaton számos élőlény együttes alapján jónak ill. kiválónak mondható. Ez azzal magyarázható, hogy a befolyók esetén a hatóságok a növényi tápanyagterhelés csökkentését szorgalmazták, amire a mezotróf Balaton jól reagált, s így sikerült előni a növényi mikroszervezetek számának jelentős csökkenését (6-2. ábra).

6-2. ábra: A felszíni víztestek ökológiai állapota a víztestek száma szerinti megoszlásban

A vízfolyások ökológiai állapotát (erősen módosított és mesterséges víztestek esetén potenciálját) és az egyes minőségi elemek szerinti minősítések eredményeit 6-1 – 6-4 térképmellékletek mutatják be. Az osztályba sorolás arányait a minősítés részét képező elemcsoportonként és víztest kategóriánként a 6-1. és a 6-2. táblázatok foglalják össze.
6-1. táblázat: A felszíni víztestek ökológiai minősítésének eredményei minőségi elemenként és összesítve, a víztestek darabszáma szerint

<table>
<thead>
<tr>
<th>Állapot/ potenciál</th>
<th>Biológiai osztályozás</th>
<th>Hidromorfológiai osztályozás</th>
<th>Fizikai-kémiai osztályozás</th>
<th>Specifikus szennyezők (fémek)</th>
<th>Ökológiai minősítés</th>
</tr>
</thead>
<tbody>
<tr>
<td>osztály</td>
<td>db</td>
<td>%</td>
<td>db</td>
<td>%</td>
<td>db</td>
</tr>
<tr>
<td>Kiváló</td>
<td>2</td>
<td>2%</td>
<td>7</td>
<td>8%</td>
<td>14</td>
</tr>
<tr>
<td>Jó</td>
<td>9</td>
<td>10%</td>
<td>39</td>
<td>42%</td>
<td>46</td>
</tr>
<tr>
<td>Mérsékelt</td>
<td>30</td>
<td>33%</td>
<td>12</td>
<td>13%</td>
<td>17</td>
</tr>
<tr>
<td>Gyenge</td>
<td>23</td>
<td>25%</td>
<td>0</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Rossz</td>
<td>16</td>
<td>17%</td>
<td>25</td>
<td>27%</td>
<td>0</td>
</tr>
<tr>
<td>nam</td>
<td>2</td>
<td>2%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>10</td>
<td>11%</td>
<td>0</td>
<td>0%</td>
<td>14</td>
</tr>
</tbody>
</table>

Megjegyzés: Az ökológiai minősítés az 6-1. ábra szerinti „egy rossz - mind rossz” elv alapján történik, a fentiekben leírt szempontok figyelembevételével, tehát az összesítő minőségi elemekre vonatkozó arányokból nem számítható az összesített arány. A „nam”= nem alkalmazható minősítés alkalmazása két esetben történt: időszakos, rendszeresen kiszáradó víztesteknél vagy monitoring szempontjából az adott minőségi elemre nem releváns víztípusokban. Az ökológiai minősítést a specifikus szennyezőkre vonatkozó adatok hiánya esetén is elvégezték.

6-2. táblázat: A felszíni víztestek ökológiai minősítésének eredményei a különböző kategóriákban

<table>
<thead>
<tr>
<th>Osztály</th>
<th>Természetes jellegű</th>
<th>Erősen módosított</th>
<th>Mesterséges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>db</td>
<td>%</td>
<td>db</td>
</tr>
<tr>
<td>Kiváló</td>
<td>0</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Jó</td>
<td>5</td>
<td>17%</td>
<td>5</td>
</tr>
<tr>
<td>Mérsékelt</td>
<td>13</td>
<td>45%</td>
<td>13</td>
</tr>
<tr>
<td>Gyenge</td>
<td>6</td>
<td>21%</td>
<td>7</td>
</tr>
<tr>
<td>Rossz</td>
<td>3</td>
<td>10%</td>
<td>9</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>2</td>
<td>7%</td>
<td>4</td>
</tr>
<tr>
<td>nam</td>
<td>0</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Összes víztest</td>
<td>29</td>
<td>100%</td>
<td>38</td>
</tr>
</tbody>
</table>

Megjegyzés: A „nam”= nem alkalmazható minősítés alkalmazása két esetben történt: időszakos, rendszeresen kiszáradó víztestknél vagy monitoring szempontjából az adott minőségi elemre nem releváns víztípusokban.

A természetes és erősen módosított víztestek állapotának/potenciáljának összevetésekor fontos kiemelni, hogy az erősen módosított víztestek felülvizsgálata egy többlepcsős iteratív folyamat, amelynek része az állapotértékelés, a társadalmi egyeztetés és a tervezett intézkedések költséghatékonysági elemzése. Mindezek ismeretében véglegesíthető az erősen módosítottság és
az ehhez tartozó célkitűzés: a jó ökológiai potenciál, amelynek alapja az ökológiai hatékony intézkedések végrehajtása.

Így a jelenleg mérsékelt és annál rosszabb minősítési eredmények az erősen módosított víztestek társadalmi és az intézkedések gazdasági felülvizsgálata miatt változhatnak.

Az állapotértékelés eredményeit külön-külön, minőségi elemenként is bemutatjuk.

Biológiai jellemzők

VKI kompatibilis biológiai monitoring adat a Balaton részvízgyűjtőn a víztestek 87%-ra állt rendelkezésére. A biológiai állapot a vizsgált víztestek nagy részén mérsékelt (33%) és gyenge állapotú (25%), valamivel kisebb a jó állapotú vizek aránya (10%), rossz állapot 17%-ban, a kiváló állapot 2%-ban volt jelen. Minőségi elemenként eltérések mutathatók ki az egyes élőlény-csoportok között (6-3. ábra), ami egyrészt magyarázható az élőlénycsoportok eltérő terheléssel szembeni érzékenységével (stresszor-specifitásával) (6-1 melléklet), másrészt azzal, hogy a fitoplankton és makrofítont csoportok eltérő víztípusokon relevánsak a monitoring szempontjából, így adatgyűjtés csak a vizsgálatra kijelölt víztípusokból történt ezekre a minőségi elemekre (4-1 melléklet).

A biológiai minőségi elemek víztestek száma szerinti megoszlását élőlény-együttesenként, a 6-3. ábrán mutatjuk be.

6-3. ábra: A felszíni víztestek biológiai minősítésének a víztestek száma szerinti megoszlása élőlény-csoportonként

Megjegyzés: A „nam”= nem alkalmazható minősítés alkalmazása két esetben történt: időszakos, rendszeresen kiszáradó víztesteknél vagy monitoring szempontjából az adott minőségi elemre nem releváns víztípusokban.
A Balaton részvízgyűjtőn a víztesteknek csak 11%-a adathiányos a fitobentosz vonatkozásában. A Balatonba futó vizek 42%-a kiváló/jó állapotú, különösen igaz ez a Balaton-felvidék patakjaira. A Balaton legjelentősebb befolyája a Zala folyó, általában jó (helyenként mérsékelt) állapotú a fitobentosz alapján. A Kis-Balatonból ugyancsak jó állapotú víz lép be a Balaton Keszthelyi-öböbe, s ezáltal a Balaton jó (Siófoki-medencében kiváló) állapottal jellemezhető. Azok a kisvízfolyások, melyeknek az állapota/potenciálja nem éri el a jót, általában erősen módosított, vagy mesterséges víztestek, bár ezek között is találunk jó állapotúakat a fitobentosz elölénycsoport alapján.

A vízgyűjtő legjellegzetesebb vízfolyásai a dombvidéki, durva mederanya gú kisvízfolyások. Mivel ezek esetén a fitoplankton nem releváns biológiai elem e vizeket fitoplanktononra nem monitorozzák. Bár a Balaton déli partján találunk olyan kis befolyákat, melyeken medertározás történik, a többségük e tekintetben nem érintett, így ezek állapota (amennyiben monitorozva voltak) a fitoplankton alapján jónak mondható.

A vízgyűjtőn központi víztest a Balaton, ami rekreációs és turisztikai szerepe miatt különös figyelmet érdemel. A fitoplankton szerepe tavak esetén kiemelve, hiszen ez az elölénycsoport a tavi ökoszisztéma meghatározó eleme, nagy tavak esetén kiváló állapotú víz mindenképpen. A Balatonba futó vizek 42%-a kiváló/jó állapotú, különösen igaz ez a Balaton felvidék patakjaira.

A Balaton legjelentősebb befolyája a Zala folyó a tavi ökoszisztéma meghatározó eleme, a tavi rendszer legfontosabb energetikai alapját képezik. A Balaton esetén örvendetes tény az, hogy mérsékelt vagy annál rosszabb állapot a tó egyetlen medencéjére sem volt jellemző. A három nyugati medencére (Keszthelyi-medence, Szigligeti-medence, Szemesi-medence) jól állapot volt a jellemző. A Siófoki-medence kiváló állapotú volt a vizsgált években. Ezek az eredmények azért is nagyobb hangsúlyt kell kapjanak, mert a minősítés során azt a koroffill-a határértéket használtuk, amelyet a Közép-európai tavakra dolgoztak ki a tagállamok és nemzetközi szinten is sikerrel járt az interkalibrációt. A Siófoki-medence kiváló állapota oligotróf, oligo-mezotróf állapotot jelent, ami a tó egykori referenciálisnak tekinthető állapotához hasonló állapotot jelent.

A Balaton részvízgyűjtőjén makrofiton elölénycsoportra a monitorozott felszíni vizeknek a 22%-án volt mintavétel. Ez az arány kevés abban a tekintetben, hogy a makrofiton szervezetek ugyanolyan fontos elemei a biológiai vízminősítésnek, mint a fitobentosz vagy a makrozoobenton.

Az irodalom és a hazai vizsgálatok alapján is elmondható, hogy a makrofiton élőlénycsoport olyan stresszorokra érzékeny, mint a vízben található növényi tápanyagok (nitrogénformák és összes foszfor), illetve a vízpart ember általi bolygatottsága.

Makrofitonok alapján kiváló állapotot három vízfolyás érte el (Tapolca-patak, Kis-Zala és Szentjakabí-patak). A részvízgyűjtőn a monitorozott víztestek többsége jó állapotban van, ezek között egységesen van dombvidéki és síkvidéki vízfolyás is. Mérsékelt állapotot egyetlen vízfolyás a Büdösgáti-víz ért el. Gyenge vízminőségű vízfolyás nem található a részvízgyűjtőn.

A Balaton részvízgyűjtőjén makrofiton elölénycsoportra a monitorozott felszíni vizeknek a 22%-án volt mintavétel. Ez az arány kevés abban a tekintetben, hogy a makrofiton szervezetek ugyanolyan fontos elemei a biológiai vízminősítésnek, mint a fitobentosz vagy a makrozoobenton.

Az állóvizek közül a Balaton részvízgyűjtőn a Balaton és a Kis-Balaton lett monitorozva. Ezek mindegyike jó állapotot mutat a makrofiton elölénycsoport összetétele alapján.

A Balaton részvízgyűjtőn a víztestek 73%-ról volt vízi makrogerinctelen adat. Ezen a vízgyűjtőn a legmagasabb a kiváló állapotú vizek aránya (9%) makrozoobenton tekintetében a vízgált víztestek. Ez főleg a Balatonba futó vizek általános jó állapotának köszönhető (Széplaki- és Kánya-patakok, Rigó-csatorna és mellékvízfolyások, Tetves-patak, Köröshegyi-Séd, Örvényesi-Séd és mellékága). A Zala eredésétől a befolyásig állapotomlás figyelhető meg: a felső szakasz jó, a középső és alsó szakaszokban mérsékelt állapotot mutat. A Kis-balatoni tározóból azonban már jó állapotú víz lép be a Balatonba. Azok a kisvízfolyások, amelyeknek nem érik el a jó az állapotot/potenciált, általában erősen módosított, vagy mesterséges víztestek (Héviz-folyás és Öberek-csatorna, Egyesített-övcsatorna és csatornarendszere).
A Balaton részvízgyűjtő szinten is igen elzáró, ami korlátozza a halak vándorlását, illetve a halállomány regenerálódását az élőhelyek degradációját követően. Emellett azonban az egyes vízfolyások is nagymértékben fragmentálódtak. Jól tükrözi ezt pl. a Balatonba északról torkolló kisvízfolyások állapota. Számos északi befolyó torkolati szakasza jó állapotú egy viszonylag rövid szakaszon (pl. Egervíz alsó, Kétöles alsó, Lesence alsó), egészen addig, amíg a halak feluszthatnak a Balatonból. Azonban a vándorlást korlátozó betonműtárgyak megjelenésével és a meder nagyfokú elnádasodása miatt a halállomány fokozatos elszegényedése figyelhető meg; a felső és középső szakaszon csupán egy-két őshonos, típus-specifikus halfaj található. A déli befolyók víztestjeinek állapota döntően mérsékelt (pl. Marótölgyi-csatorna), gyenge (Zala-Somogy határákon) vagy rossz (pl. Jamai-patak, Halsok árok) a halastavakból nagy mennyiségben kijutó idegen-honos fajok és a legközönségesebb őshonos fajok magas aránya miatt; e víztestek állapota időben erősen változhat a mérsékelt és a rossz állapot között.

A reprezentativitást alapvetően két tényező befolyásolta: a mérések megbízhatósága (adatszámtól függően), és a mintavételi pont elhelyezkedése (kémiai szempontból az alsó, kifolyási ponthoz közelebbi hely mutatja leginkább összegezve a víztest állapotát).

Az osztályba sorolás eredményeit komponens csoportonként a 6-3. táblázat és az 6-4. ábra mutatja. A minősítés az elem csoportok közötti legrosszabb osztály alapján történt, a GD-13 Útmutató előírásai szerint.

6-3. táblázat: A támogató fizikai és kémiai jellemzők szerint végzett vizminősítés eredménye elem csoportonként vízfolyásokra és állóvizekre

<table>
<thead>
<tr>
<th>Osztály</th>
<th>Szervesanyagok, oxigén háztartás</th>
<th>Tápanyag-készlet</th>
<th>Sótartalom</th>
<th>Savasodási állapot</th>
<th>Fizikai-kémiai minősítés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiváló</td>
<td>40</td>
<td>30</td>
<td>53</td>
<td>78</td>
<td>14</td>
</tr>
<tr>
<td>Jó</td>
<td>30</td>
<td>38</td>
<td>23</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Mérsékelt</td>
<td>7</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Gyenge</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rossz</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Összes vizsgált víztest</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
</tr>
</tbody>
</table>

6-4. ábra: Vízfolyások és állóvizek számának megoszlása a fizikai-kémiai minősítésre kapott osztályba sorolás szerint
Látható, hogy a támogató fizikai-kémiai elemek a víztesteknek csupán 20 %-án jeleznek olyan szennyezettséget, amely a víztestet mérsékelt vagy annál alacsonyabb osztályba sorolja. Rossz állapotú víztest nincs, gyenge állapotú víztest is mindösszesen egy (a Sári-csatorna alsó szakasza). Az összes víztest 65 %-a, a minősített víztestek közé 80 %-a eléri a jó állapotot, 14 vízfolyás kiváló (15 %). Ezek az arányok az országos átlagnál lényegesen jobbak. A jó és kiváló víztestek aránya komponens csoportokonként még magasabb. A paraméter csoportok között a tápanyag tartalom szerinti osztályozás hozza a leggyengébb eredményt, azonban még erre a csoportra is 87 % a jó és kiválók aránya.

A részvízgyűjtő legjelentősebb állóvize a Balaton, mely megőrizte az előző tervezési ciklus óta is a jó állapotát és minőségét továbbra is hosszmenti természetes gradiens jellemzé. A minősítés a négy tómedence tóközépi mérési adatsora alapján készült. Eszerint a Sátoll-csatorna szintén jó állapotú víztest. A Balaton- és a másik két tómedence vízminőségét jól kiváló, többször nincs rossz állapotú, és jó állapotú a Kis-Balaton II. ütemeként (a minősítési időszakban még csak részben) üzemelő Fenéki-tó. A Hídvégi tó azonban csak mérsékelte állapotú.

Jó minősítésű a Zala folyó is teljes hosszában (a 6 évvel ezelőtti tervben még csak a felső, forrásvizének szakasza kapott jó minősítést). A Zala esetében elsősorban a két nagy tápanyagok jelenléte okozhat problémát, hiszen ez a folyó szállítja a Balaton vízgyűjtőről érkező folyamatos terhelést felé a tóba.

A fizikai-kémiai elemek szerinti minősítés a biológiai minősítéshez viszonyítva jobb állapotot tükröző vizeinkről. Az eredmény a biológiai elemek közül a fitobentosz élőlénycsoporttal mutat szoros összefüggést, mert ez a minősítő elem mutatja leginkább a fizikai-kémiai jellemzőkkel összhangban a tápanyag és szerves terhelés hatását és kevésbé érzékeny a hidromorfológiai beavatkozásokra.

Egyéb specifikus szennyezőanyagok (fémek)
A Balaton részvízgyűjtő területén 39 víztest rendelkezik a vízgyűjtő-specifikus szennyező anyagokra megfelelő értékelésre alkalmas vizsgálati eredményekkel, ez a 82 víztest 47,6%-a. Egyedül két víztest (Kéki-Séd, Tapolca-patak) nem jó állapotú, ezen kívül valamennyi víztest jó és kiváló állapotú egy új toksikus elem szempontjából. (A veszélyes anyagokkal kapcsolatos elemzéseket lásd az Országos Vízgyűjtő-gazdálkodási Terv 6-3. mellékletében és a végleges tervben közlésre kerülő 6-3. háttéranyagban).

Hidrológiai és morfológiai jellemzők
A hidromorfológiai állapotértékelés három elemcsoportra – a morfológiai jellemzőkre, az átjárhatóságra, illetve a hidrológiai kritériumokra – külön-külön végez értékelést, majd ez a három az „egy rossz, mind rossz” elv alapján kerül együtt áttekintésre. Az így előálló hidromorfológiai osztályozás szerint a 83 víztest közül 25 lett rossz állapotú (30%). Gyenge állapot nem fordult elő,
viszont 11 víztest kapott mérsékelt állapot besorolást (13%). Jó állapoptot 40 (48%), kiváló állapotot 7 (8%) víztest ért el (6-5. ábra).

A három értékelési kategória közül a Balaton részvízgyűjtőn az átjárhatóság a hidromorfológiai jó állapot szűk keresztmetszete. A részvízgyűjtőn 25 víztest (30%) bizonyult átjárhatóság szempontjából rossz állapotúnak, és ebből adódóan ugyanezen víztestek a hidromorfológiai minősítésben is rossz állapotúként jelentek meg. Időszakosan átjárható lévén mérsékelt morfológiai állapotú 6 víztest (7%). A morfológiai jellemzők közül általanában a jelentős hosszban végzett mederszabályozás, illetve a természettestől nagymértékben eltérő területhasználat miatt lett mérsékelt állapotú 6 víztest (7%). Gyenge és rossz állapot nem fordult elő. A hidrológiai állapot 1 víztest (2%) esetében került mérsékelt és 2 esetében gyenge besorolásba, valamennyinél a hasznosítható vízkészletet meghaladó vízkivétel és egyidejű duzzasztás miatt.

A Balaton részvízgyűjtő víztestei hidromorfológiai állapotértékelésének részletes adatai a 6-4. mellékletben találhatóak.

6.1.2.2 Felszíni víztestek kémiai állapotának jellemzése

Alkalmazott módszerek

Az élővilág hosszú távú, krónikus hatások elleni védelme érdekében a kémiai állapotértékelés a víztestek átlagos szennyezőanyag koncentrációját vizsgálja és viszonyítja a 2008/105/EK irányelv AA-EQS határértékeihez.

Az alkalmazott módszer (felhasznált adatok köre, adatellenőrzés, osztályhatárok megállapítása) leírását az Országos Vízgyűjtő-gazdálkodási Terv 6.1.2.2 fejezete tartalmazza.
Eredmények
A kémiai állapotértékelés során a 2008 (2. félév) - 2012 közötti időszakban vett felszíni vízminták analitikai eredményei kerültek feldolgozásra.
A kémiai állapotértékeléshez a Balaton magyarországi részvízgyűjtőjén 40 víztesten történtek az elmúlt VGT ciklusban mérések, ami a 92 víztest 43,5%-a, teljes egyezésben a vízgyűjtő-specifikus szennyező anyagok monitoringjával.
A víztestek kémiai állapota 39 esetben (a vizsgált víztestek 97,5%-a) érte el a jó állapotot, míg egy víztest esetében kifogásolható (Sári-csatorna középső szakasza) és 52 esetben ismeretlen.
A rossz állapotot a kadmiumnak a környezetminőségi határértékénél (EQS) magasabb koncentrációja okozza.
A kadmium közismert egészségkárosító hatása (Itai-Itai kór) és régóta tartó jogi szabályozása miatt általában nem jellemző már az ipari kibocsátásokra. A valószínű forrás a szennyezett területekről történő közvetlen vagy a felszín alatti víz közvetítésével történő lefolyás, vagy a műszaki védelem nélküli hulladéklerakók, meddőhányók.

6.1.2.3 Felszíni vizek ökológiai és kémiai állapotának összevont értékelése
Az integrált minősítés a 6-1. ábrán feltüntetett módszertan szerint azt jelenti, hogy az ökológiai és a kémiai minősítés közül a rosszabbik dönti el a víztest állapotértékelésének eredményét. A víztestenkénti minősítési eredményeket, az állapotértékelés megbízhatóságát és az ökológiai és kémiai osztályba sorolást az 6-1 melléklet tartalmazza.

6.2 Felszín alatti víztestek állapotának minősítése
A felszín alatti vizek állapotának minősítését a 30/2004 KvVM rendelet alapján kell végrehajtani. A jogszabály összhangban áll a VKI előírásaival, a „Felszín alatti vizek védelme Irányelvvel” és az EU szinten kiadott útmutatóval. A víztestek állapotának minősítését a 2008-2013 közötti időszak változásai szerint kellett elvégezni, Figyelembe véve azonban az előzményeket, a hosszabb távú tendenciákat is.
A felszín alatti vizek minősítése mennyiségi és kémiai (vízminőségi) szempontból történik. Az állapotértékelés feladata, hogy azonosítsa a gyenge állapotot kiváltó terhelést annak érdekében, hogy a megfelelő intézkedéseket meghatározásra kerüljenek.
A részvízgyűjtőhöz 15 felszín alatti víztest tartozik, ebből 2 sekély hegyvidéki, 2 hegyvidéki, 2 hideg karszt, 1 termál karszt, 5 sekély porózus és 3 porózus víztest.
A felszín alatti víztestek minőségének állapotának minősítése 6-2-1 háttéranyaga, és a kémiai értékelés 6-2-2 háttéranyaga mutatja be.

6.2.1 Felszín alatti víztestek mennyiségi állapotának minősítése
A felszín alatti víztestek mennyiségi állapotát ötfele tesztel vizsgálták. A tesztek elvégzése során kiemelt szerepet kapnak a felszín alatti víztől függő őkoszisztémák.
A süllyedéses tesztt a monitoring kutakban mért adatok alapján trendeléseket végez. Felhasználja az értékeléseken a rendelkezésre álló szakértői anyagokat, regionális modellezések eredményeit. Kimutatja, hogy a víztesten hol és milyen mértékű vízszint süllyedés következett be.

Az un. vízmérleg teszt a víztest szintű vízigények kielégítését vizsgálja. Számszerűsíti a felszín alatti víztől függő ökoszisztémák vízigényét és részletesen számol veszi a társadalmi terheléseket, a közvetlen és közvetett vízkivételeket. A víztest állapota akkor jó, ha az utánpótlás elegendő mind a felszín alatti víztől függő ökoszisztémák, mind a társadalmi vízigények kielégítésére.

A felszín alatti vízből származó táplálás csökkenése a források vízhozamára, a vízfolyások alapvízhozamára is hatással lehet. A kisvízi hozam, ill. forráshozam azonban tartósan nem lehet kisebb, mint az ökológiai minimum igény, mert az az élővilág degradációjához vezethet. Ezt a folyamatot vizsgálja az un. felszíni víz teszt.

A FAVÖKO teszt a víztes és a magas talajvízállástól függő ökoszisztémák, a természetvédelem szerint megállapított állapotát veszi alapul. Ha víztesten jelentős ökoszisztémák károsodtak, akkor a víztest gyenge állapotú.

Az intrúziós teszt azt vizsgálja, hogy a vízkivétel következtében létre jött-e a természetes áramlási rendszerek olyan mértékű átalakulása, hogy az a felszín alatti víz hőmérsékletében és vízkémiai összetételében tartós változást eredményezett.

Az egyes teszteket közül a legmagasabb megbízhatósága a közvetlen méréseken és tapasztalaton alapuló süllyedéses és FAVÖKO tesztnek van.

A mennyiségi állapotra vonatkozó minősítést valamennyi felszín alatti víztestre el lehetett végezni, de nem mindegyik teszt volt alkalmazható minden egyes víztest esetében (6-4. táblázat).

A mennyiségi állapot minősítésének eredményeit foglalja össze az 6-5. táblázat, az 6-6. ábra és a 6-5 mellékleklet, valamint a 6-6 - 6-9 térképmelléklekletek.

Az elvégzett teszteket alapján a 15 felszín alatti víztest közül 1 állapota gyenge (sp.4.3.2, Balaton a Berekkel), jó, de gyenge kockázatúnak minősített víztest nincs.
6-4. táblázat: A felszín alatti víztestek mennyiségi állapotát meghatározó vizsgálatok a Balaton rézvízgyűjtőn

<table>
<thead>
<tr>
<th>Víztestek típusa</th>
<th>víztestek száma</th>
<th>Süllyedés teszt</th>
<th>Vízmérleg teszt</th>
<th>Felszíni vízre vonatkozó teszt</th>
<th>Vizes és szárazföldi ökoszisztémák állapota</th>
<th>Intrúziós teszt</th>
</tr>
</thead>
<tbody>
<tr>
<td>sekély porózus</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>porózus</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>porózus termál</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sekély hegyvidéki</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hegyvidéki</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>karszt</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>termálkarszt</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Összes</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

6-5. táblázat: Felszín alatti víztestek mennyiségi állapotának minősítése tesztenként és víztest típusonként a Balaton rézvízgyűjtőn

<table>
<thead>
<tr>
<th>Víztestek típusa</th>
<th>víztestek száma</th>
<th>Süllyedés teszt</th>
<th>Vízmérleg teszt</th>
<th>Felszíni vízre vonatkozó teszt</th>
<th>Vizes és szárazföldi ökoszisztémák állapota</th>
<th>Intrúziós teszt</th>
</tr>
</thead>
<tbody>
<tr>
<td>sekély porózus</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>porózus</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>porózus termál</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sekély hegyvidéki</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hegyvidéki</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>karszt</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>termálkarszt</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összes</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Az összesített minősítés alapján a víztestek száma kevesebb is lehet, mint az egyes tesztek alapján szereplő számok összege, mert egy víztest több ok miatt is lehet gyenge vagy bizonytalan állapotú.
A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása

6.2.1.1 Tartós vízszintösszegedés vizsgálata

A süllyedéses teszt a monitoring kutakban mért adatok alapján vizsgálja, hogy a víztesten hol és milyen mértékű vízszintösszegedés következett be. A vízszintösszegedés teszt részletes adatai és eredményei a 6-6 mellékletben találhatók.

A süllyedés tesztet mind a 15 felszín alatti víztestre el lehetett végezni, amely alapján az összes víztest jó állapotú.

A felszín alatti vízkivétel hatására bekövetkező jelentős vízszint-süllyedési tendenciák elemzése részletes adatfeldolgozás alapján alapul. A trendszerű süllyedések elemzése 172 db monitoringkút idősora alapján készült. Az elemzés kiterjed a csapadék mennyiségére, a monitoring kutakban mért adatsorokra, a túltermelések által okozott vízszint-süllyedésekre vonatkozó területi információkra, más projektekben elkészült regionális hidrodinamikai modellezési eredményekre és szakértői becslésekre is.

A sekély porózus víztesteken 50 db monitoringkút található. 39 esetében kismértékű vízszintösszegedés volt tapasztalható a 2008-2013 közötti időszakban. A Balaton déli vízgyűjtője (sp.4.3.1) és a Bereki (sp.4.3.2 víztesten) a 0,05-0,2 m/év mértékű süllyedési trend elérte a víztestek területének 45%-t (a gyenge állapot határa 50%). A Zala-vízgyűjtő (sp.4.1.1), Zalai-dombás-Balaton vízgyűjtő (sp.4.2.1) sekély porózus felszín alatti víztesteken a 0,05-0,2 m/év mértékű süllyedés területe 30% körüli.
6-7. ábra: A vízszintváltozás trendje 2008-2013 között a sekély porózus víztestekben

A sekély porózus víztestek alatt található porózus víztestek, a 8 db monitoring kút alapján végzett elemzés alapján már nem mutatják a süllyedő tendenciát, ezekben a víztestekben nem tapasztalható vízszint süllyedés.

A többi víztest esetében a trendelemzés jobb eredményekkel zárult. A VGT2 során végzett trendelemzések alapján szinte az összes monitoring kút (hegyvidéki 9 db, sekély hegyvidéki 1 db, karszt 70 db, termálkarszt 34 db) emelkedő vízszintet mutat. 3 db monitoringkút lokális süllyedést mutat Mindszentkállán, Válluson és Nemesbükön. Kevés adat alapján becsléssel süllyedés állapítható meg Szentgálon.

6.2.1.1.1 Dunántúli-középhegység dél-nyugati része, a k.4.1. és a kt.4.1. karsztvíztest

A Balaton részvízgyűjtő kiemelt fontosságú víztestjei a Dunántúli-középhegység DNy-i részén található k.4.1 karszt és kt.4.1 termál karszt víztestek.

A Hévízi-, Tapolcai-, Tapolcafői-források vízgyűjtője a Keszthelyi-hegység és a Bakony Ny-i területét foglalja magában, jelentős kiterjedésű nyílt karsztos beszivárgási területekkel. A víztestet a nevének megfelelően három közel azonos nagyságú forrásrendszer csapolja meg, a víztest D-i peremén további kisebb jelentőségű, szerkezei vonal menti források fakadnak.

A Dunántúli-középhegységben a mélyművelésű bányászat, az 1990-es évek elejére jelentős környezeti károkat okozó, tartós karsztvízszint süllyedést okozott. A vízkivétel egyik fő központja
Nyírád volt. Legjelentősebb hatása a karsztvízszint és a karsztforrások hozamának csökkenése, néhány víztest esetében a teljes elapadása volt. A bányászati vízkimenelés felhagyása után a területen az 1990-es évektől a karsztvíz fokozatosan emelkedett, annak ellenére, hogy az ivóvízkivétel és Hévíz környékén a fürdő-gyógyászati célú karsztvízfelhasználás jelentős mértékű maradt.

A VGT1-ben a Dunántúli-középhegység az emelkedő vízszint ellenére a gyenge minősítést kapta, mivel a magasan fekvő források még nem szólaltak meg, a vízkivételek környezetében a mélyebben fakadók hozama nem érte el az ökológiaiáll kivánatos értéket, illetve a forráshozamok adatai rendkívül bizonytalanok voltak. A 2010-es év extrém magas csapadék mennyisége jelentős mértékben módosított ezen a helyzetben. A visszatöltődés eredményeképpen a karsztvízszintek elérik, vagy meghaladják az 1960-as évek közepén mért szinteket.

A Keszthelyi-hegység D-i, K-i oldalán mértető karsztvízszintek 3-4 méterrel alacsonyabbok az 1970-ben mértnél – korábbi adat nincs –, miközben a hegység É-i peremén, az Uzsai-árok túoldalán lévő, a nyirádi depresszió által érintett lesencei kutakban a vízszintek már elérték a hasonló időszakban mért értékeket. 2003-hoz képest a Keszthelyi-hegység központi, magas részén, Vállus térségében a vízszint 2 m-t, DNy-on Keszthelyen 0,6 m-t süllyedt, a Ny-i langyos vizes területen, a Hévízi-tó közelében kb. 0,6 m-t emelkedett.

6-6. táblázat: A karsztvízszint emelkedésének mértéke a 2003-2014 közötti időszakban

<table>
<thead>
<tr>
<th>Víztest (Tárolórész)</th>
<th>2014. januári. karsztvízszint (mBf)</th>
<th>2003-2014 vízszintkülönbség (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ny-Dunántúli termálkarszt (Bakony Ny-i előtere)</td>
<td>160 – 170</td>
<td>15</td>
</tr>
<tr>
<td>Hévízi, Tapolcai, Tapolcafői f-OK (Keszthelyi-hgy.)</td>
<td>118 – 128</td>
<td>-2 –→1</td>
</tr>
<tr>
<td>Hévízi, Tapolcai, Tapolcafői f-OK (D-i Bakony)</td>
<td>260 – 270</td>
<td>15 – 20</td>
</tr>
<tr>
<td>Hévízi, Tapolcai, Tapolcafői f-OK (Magas-Bakony)</td>
<td>200 – 220</td>
<td>20 – 30</td>
</tr>
</tbody>
</table>
6-8. ábra: Karsztvízszint idősorok a Bakony nyugati előterében (kt.4.1. víztest) és a Hévízi-tó hozamváltozása

6-9. ábra: Karsztvízszint idősorok a DNy-i Bakony (k.4.1. víztest) területén és Tapolca Malom-tó forrás vízhozam változása
6.2.1.2 A felszín alatti vízkészlet állapota a vízmérleg teszt alapján

A vízmérleg teszt a víztest szintű vízigények kielégítését vizsgálja. A vízmérleg teszt részletes adatai és eredményei a 6-7 mellékkletben találhatók.

A vízmérleg tesztet mind a 15 felszín alatti víztestre el lehetett végezni, amely szerint minden víztest jó állapotú.

A vízmérleg teszt az emberi igényeket kielégítő vízhasználatok, és az ökoszisztémák célállapotához tartozó vízigények közötti konfliktust vizsgálja. Ilyen értelemben nem hagyományos vízmérlegről van szó, hiszen az ökoszisztémák vízfogyasztása (a felszín alatti vízektől függő szárazföldi és vízi ökoszisztémák vízigénye, valamint a felszíni víztestek jó ökológiai állapotához szükséges alaphozam) nem az aktuális, hanem a jónak vélt állapot szerint szerepel a számításokban. Az ökoszisztémák célállapotja ökológiai, gazdasági és társadalmi szempontok együttes figyelembevetelével határozható meg. A felszín alatti vízgyűjtő (víztest-csoport) jó állapotának kritériuma, hogy a társadalom által közvetlenül felhasznált, vagy valamilyen tevékenységgel előidézett közvetett vízkivételek mennyisége ne haladja meg a hasznosítható rendelkezésre álló vízkészletet.

6.2.1.2.1 Sekély porózus és porózus víztest

A sekély és porózus víztestek közül a Zala-vízgyűjtő sp.4.1.1. és a p.4.1.1 víztesteken van jelentős vízkivétel. A sekély porózus víztesten a közvetett vízkivétel, ezen belül is a bányatavak többletpárolgása dominál. A területen a tőzegbányászat a jellemző, ami a felszín alatti víztől függő ökoszisztémákat (lápokat) közvetlenül érinti. A porózus víztesten az ivóvízcélú vízkivétel a jelentős, a legnagyobb mennyiséget Zalaegerszegen termelik.

A felszín alatti víztől függő élőhelyek a sekély porózus víztesteken találhatók, vízellátásukhoz azonban közvetett módon, a víztestek közötti átadódás révén a porózus víztestek is hozzájárulnak.

A sekély és porózus víztestek közül a Zala-vízgyűjtő sp.4.1.1. és a p.4.1.1 víztesteken van jelentős vízkivétel. A sekély porózus víztesten a közvetett vízkivétel, ezen belül is a bányatavak többletpárolgása dominál. A területen a tőzegbányászat a jellemző, ami a felszín alatti víztől függő ökoszisztémákat (lápokat) közvetlenül érinti. A porózus víztesten az ivóvízcélú vízkivétel a jelentős, a legnagyobb mennyiséget Zalaegerszegen termelik.

A felszín alatti víztől függő élőhelyek a sekély porózus víztesteken találhatók, vízellátásukhoz azonban közvetett módon, a víztestek közötti átadódás révén a porózus víztestek is hozzájárulnak.

A VGT2 FAVÓKO élőhelyek térképének lehatárolása a részletes térinformatikai elemzések alapján történt, az állóvíz szegmens, a CLC50, az ex lege lápok és szikes tavak, a Natura2000 területek, az erdőtérkép, valamint a 2006-os és 2013-as talajvízállás GIS állomány felhasználásával.

Egy élőhely vízigénye megadható a víz állapotára vonatkozó feltételekkel (átlagos vízszint, vízjárás, talajnedvesség tartalom, stb.) és kifejezhető vízhozamban is. A felszín alatti víztestek vízmérleg tesztjéhez a vízigényt hozamban, Sokéves, átlagos viszonyokra vonatkoztatva adták meg (6-7. melléklet).

A sekély víztestek jellemző FAVÓKO-i a vizes és szárazföldi ökoszisztémák, amelyek a felszín alatti áramlásai rendszerű kilépési, megcsapolási pontjain alakulnak ki: tavak, mocsarak, lápok, a magas talajvízállástól függő nedves gyepek, láprétek és mocsárrétek, erdők, ártéri erdők. Tipikusan FAVÓKO élőhely a Berek. Nem tekinthető viszont FAVÓKO-ak sem a Kisbalaton, sem a Balaton, mert utánpótlásuk nagyobb hányada felszíni vízből származik.

Dombvidékeken az élőhelyek jelentős része a kisvízfolyások mély, keskeny völgyeire korlátozódik, és az élőhelyen kívül általában sehol nincs felszín közelében a talajvíz.
6.2.1.2.2 Dunántúli-középhegység, a k.4.1. és a kt.4.1. karsztvíztest

A k.4.1. karsztvíztesten az ivóvízcélú vízkivétel a 2008-2013 közötti időszakban is jelentős volt, elérte a 46 700 m³/napot. A vízkivétel eloszlása egyenletlen, a regionális hálózatot ellátó nyirádi karsztvízbázisra koncentrálódik. A kt.4.1. termál karsztvíztesten, a zömmel Hévíz környéki fürdés-rekreáció célú vízkivétel 4 700 m³/nap, a termálvíz utáni igény egyre nagyobb.

A főkarsztos források jórészt az ún mélykarsztból fakadnak, a nagy kőzetvastagság, nagy tárolt készlet, és a viszonylag gyors szivárgási sebesség miatt, hozamukat elsősorban a sokévi átlagos beszivárgás határozza meg. A forráshozamok az utánpótlódás változására lassan reagálnak, a vízhozamuk ingadozása kicsi. A 2014 évi felmérés
során vízsgált források hozamát az 1950-60 közötti időszakban mért hozamokkal hasonlították össze (6-7. táblázat).

6-7. táblázat: A források hozama

<table>
<thead>
<tr>
<th>Víztest</th>
<th>Víztest neve</th>
<th>Mért, becsült hozam 2013-2014 (m³/nap)</th>
<th>Mért átlagos hozam 1951-60 (m³/nap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.4.1</td>
<td>DKH Hévízi-, Tapolcai-, Tapolcafői-források vgy.-je</td>
<td>109 773</td>
<td>143 571</td>
</tr>
<tr>
<td>Kt.4.1.</td>
<td>Ny-Dunántúli termálkarszt</td>
<td>35 568</td>
<td>41 085</td>
</tr>
<tr>
<td>K.4.2.</td>
<td>Balaton-felvidéki karszt</td>
<td>19 022</td>
<td>13 814</td>
</tr>
</tbody>
</table>

A területen a langyos és hideg forrásvíz hozama az ötvenes években mérthez képest 76%, ami 110 000 m³/nap-ot (76 m³/perc) jelent. A terület forrásai a 2000-es évek elejétől kezdetek fokozatosan újra működni, ma már csak a legmagasabb helyzetű geypükjájáni és pápakovácsi karsztforrások nem indultak útra, míg az ócsi Kinder-tó kb. 430 m³/nap (0,3 m³/perc) hozammal 2014 őszén újra indult. A mélyebben fekvő tapolcai, kapolcsi források hozama már megközelíti az eredeti értékeket. Az egykor legnagyobb hozamú tapolcafől források hozama most is a legnagyobb 36 000 m³/nap (25 m³/perc), a tapolcai Malom-tó forráshozama 34 600 m³/nap (24 m³/perc) volt.

A Keszthelyi-hegység területén a 105-110 mBf szintek között fakadt karsztforrások nem apadtak el, csak hozamcsökkenést lehetett megfigyelni. A Keszthelyi-hegység hidegvízű forrásainak hozama 2014-ben jelentősen kisebb volt az ötvenes években mért néhány annak csak 44%-a. Valószínűsíteni lehet, hogy a foglalások mellett a víz egy része a környező látó területeken is fakad, a balatongyöröki Erzsébet-forrás(ok) esetében pl. jelentős mennyiség.

Mivel a visszatöltődés még mindig nem tekinthető befejezetlennek, a karsztvízszint – egyre lassuló – emelkedésével a hozamok növekedése várható a Dunántúli-középhegység legnagyobb részén, egy olyan egyensúlyi helyzet beállt, amit a források és a vízkivételek határoznak meg.

A Hévízi-tó nemcsak fürdő-gyógyászati és túrisztikai szempontból jelentős, hanem a k.4.1 és a kt.4.1. víztestek legjelentősebb megcsoportító forrása is. A Hévízi-tó, mint felszín alatti víztől függő ökoszisztéma rendszer védelme érdekében az országban először víztest szinten kidolgozásra kerültek a felszín alatti víz felhasználhatóságát szabályozó mennyiségi küszöbértékeket, valamint megadásra került a mennyiségi küszöbértékekekhez kapcsolódó vízgazdálkodási rend. A rendszer jelenleg az említett vízgazdálkodási renddel jól kézben tartott, a gyakorlatot az egyre erősödő vízigények növekedését és szükségesség fenntartani. A Hévízi-tó meghatározott ökológiai vízigénye 33 700 m³/nap.
6.2.1.2.3 Balaton-felvidéki karszt (k.4.2)

A változatos közvetlen felépítés miatt a Balatonfelvidéken nagyon sok forrás fakad, amelyek a Balatonfelvidék jellegzetes vízfolyásait a sédeket táplálják. A sédek közvetlenül a felszín alatti vízből is kapnak utánpótlást. A Dunántúli-középhegység egységes karsztvíztároló rendszeréhez nem sorolható Balaton-felvidék sekély karsztos forrásainak esetében a források hozamát nem befolyásolta a középhegységi bányszati víztelenítés (kivéve Pétfürdő környezete). Emiatt a források hozama és a vízszintek a természetes vízjárásnak megfelelően változtak.

A Balatonfelvidéken jelentős vizes FAVOKÖ a Kornyi-tó, amit karsztlápként tartanak számón.

6.2.1.3 Felszíni víz teszt

A felszín alatti vízből származó táplálás csökkenése a források vízhozamára, a vízfolyások alapvízhozamára is hatással lehet. A kisvízi hozam, ill. forráshozam azonban tartósan nem lehet kisebb, mint az ökológiai minimum igény. Ezt vizsgálja az un. felszíni víz teszt.

A felszíni vízre vonatkozó tesztet a 15 felszín alatti víztest közül 12 db esetében lehetett elvégezni, amely alapján az összes víztest jó állapotú.

A Balatonfelvidéken és Veszprém környékén az 1960-as évektől a nagyobb hozamú karsztforrásokat (Kéki-forrás, Nosztori-forrás, Veszprémi források stb) sok helyen vízműbe foglalták, és hasznosították. Ezek a források aszályos időszakban látszólag elapadtak. Ilyen időszakok az 1970-es évek végén, a kilencvenes évek, ill. a kétzres évek elején voltak megfigyelhetők. Ha a vízfolyások ökológiai vízkészletének csökkenését, a felszíni vízfolyások károsodott állapotát a források vizellátásra történő foglalása okozza, a forrás utánpótlását biztosító felszín alatti víztestet nem kell gyenge állapotúnak minősíteni. A vízfolyás rossz állapotának ilyenkor nem a forrás utánpótlási területén lévő vízkivétel az okozója.

A Dunántúli-középhegység forrásainak újra működése, illetve a hozamok fokozatos emelkedése az egykor kiszáradt vízfolyásokat is életre keltette.
6.2.1.4 Felszín alatti vizektől függő jelentős vizes és szárazföldi ökoszisztémák állapota

A FAVÖKO teszt a vizes és a magas talajvízállástól függő jelentős ökoszisztémák állapotát vizsgálja. Jelentős FAVÖKO-nak a kiemelt természetmegőrzési területeket, a NATURA 2000 területekké nyilvánított élőhelyeket tekintették. A FAVÖKO-k részletes adatait és a teszt eredményei a 6-8 mellékletben találhatók.

A FAVÖKO tesztet a sekély porózus, sekély hegyvidéki, hegyvidéki, karszt víztestekre lehetett elvégezni, a többi víztest csak közvetett kapcsolatban áll a FAVÖKOK-kal. A tesztet a 15 felszín alatti víztest közül 12 db esetében lehetett elvégezni, ebből 1 állapota gyenge, jó, de gyenge kockázatúnak minősített víztest nincs.

6.8. táblázat: Gyenge mennyiségi állapotú víztestek a felszín alatti víztől függő jelentős ökoszisztémák állapota alapján

<table>
<thead>
<tr>
<th>Érintett víztest száma</th>
<th>Az érintett terület megnevezése</th>
<th>Felszín alatti víz mennyiségi állapota miatt jelentősen károsodott NATURA 2000 terület</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp.4.3.2</td>
<td>Balaton a Berekkel</td>
<td>HUDD20059, HUDD20041, HUDD20058, HUDD20036, HUDD20035, HUBF20028, HUDD10012</td>
</tr>
</tbody>
</table>

6.2.1.5 Felszín alatti víz minőségének változása a túlzott vízkivétel eredményeképpen (intrúziós teszt)

A teszt szerint egy FAV víztest akkor van jó állapotban, ha nem áll fenn hosszú időn keresztül/tartósan sós, vagy egyéb gyenge minőségű víz intrúzió, amely vízkivételekhez köthető vízszint, vagy hidraulikus emelkedési magasság csökkenésből, vagy áramlási viszonyok megváltozásából ered. Meg kell jegyezni, hogy tartós sós, vagy egyéb intrúzió úgy is fennállhat, hogy az nem jár az áramlási viszonyok megváltozásával.
Az intrúziós teszt a 15 felszín alatti víztest közül 4 db esetében lehetett elvégezni, amely alapján az összes víztest jó állapotú.

6.2.2 Felszín alatti víztestek kémiai állapotának minősítése

Felszín alatti víztartóink jelentős hányada sérülékeny, ami azt jelenti, hogy a földtani felépítés következtében a felsínről a diffúz és pontszerű szennyezőforrásokból származó szennyeződések rövid idő alatt lejuthatnak a felszín alatti vízbe, ahol elkeverednek, és a felszín alatti áramlások révén akár egy egész víztestet is elszennyezhetnek, gyenge kémiai állapotot eredményezve.

A monitoring pontokon észlelt túllépések veszélyességét a következő szempontok szerint kell ellenőrizni:

- a víztest diffúz szennyezettsége nem korlátozhatja a vízkészletek jövőbeli hasznosítását – a diffúz teszt Magyarországon a nitrátra, ammóniumra és növényvédő szerekre készült,
- a víztest pontszerű szennyezőforrásból származó szennyezettsége nem korlátozhatja a vízkészletek jövőbeli hasznosítását, a vizsgálat a szerves mikroszennyezőkre és a klórozott szénhidrogénekre terjedt ki,
- a vízmű termelőkútakban vagy a vízbázis észlelőkútjaiban tapasztalt túllépés nem vezethet a vízmű bezárásához vagy az ivóvízkezelési technológia módosításához (vízbázis teszt),
- a szennyezés nem veszélyeztetheti felszíni vízfolyások ökológiai vagy kémiai állapotát (felszíni víz teszt),
- a szennyezés nem veszélyeztetheti jelentős vízes vagy szárazföldi felszín alatti ökoszisztémák ökológiai állapotát.
- jelentős termelés következtében nem következhet be a víztest minőségi terhelése (intrúziós teszt)

A jó állapot megőrzése szempontjából kockázatosnak számítanak azok a víztestek, ahol valamely szennyezőanyag víztestre vagy annak egy részére vonatkozó átlagkoncentrációja tartós emelkedő, vagy a hőmérséklet csökkenő tendenciát jelez. A vízminőségi trendek elemzésének célja, hogy jelezze azokat a problémákat, amelyek a jelenleg még jó állapotú víztestek esetében felléphetnek, a már most is kimutatható jelentős és tartós koncentráció- vagy hőmérsékletváltozás miatt.

A kémiai tesztekre is érvényes, hogy nem minden víztest esetében lehet az összes tesztet elvégezni.
6-9. táblázat: A felszín alatti víztestek kémiai állapotát meghatározó vizsgálatok a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Víztestek típusa</th>
<th>víztestek száma</th>
<th>Diffúz szennyeződés (nitrát, ammónium a víztesten >20%)</th>
<th>Szennyezett ivóvízbázis védőterület</th>
<th>Összesített trend szerinti víztest minősítés</th>
<th>Felszínli víznek állapota</th>
<th>Felszín alatti vízfelügyelés függő vízes élőhelyek és szárazföldi ökoszisztémák állapota</th>
<th>Intrúziós teszt</th>
</tr>
</thead>
<tbody>
<tr>
<td>sekély porózus</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>porózus</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>porózus termál</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sekély hegyvidéki</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hegyvidéki</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>karszt</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>termálcarszt</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összes</td>
<td>15</td>
<td>11</td>
<td>2</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

A víztestenkénti minősítés eredményeit a 6-10. táblázat, az 6-11. ábra, valamint a 6-9. melléklet összefoglaló táblázata mutatja be.

A 185 db felszín alatti víztestből, a Balaton részvízgyűjtő területére 15 darab esik. Ebből 7 állapota gyenge, azonban jó, gyenge kockázatúnak minősített víztest nincs.

6-10. táblázat: Felszín alatti víztestek kémiai állapotának minősítése tesztenként és víztest típusonként a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Víztestek típusa</th>
<th>víztestek száma</th>
<th>Diffúz szennyeződés (nitrát, ammónium a víztesten >20%)</th>
<th>Szennyezett ivóvízbázis védőterület</th>
<th>Összesített trend szerinti víztest minősítés</th>
<th>Felszínli víznek állapota</th>
<th>Felszín alatti vízfelügyelés függő vízes élőhelyek és szárazföldi ökoszisztémák állapota</th>
<th>Intrúziós teszt</th>
</tr>
</thead>
<tbody>
<tr>
<td>sekély porózus</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>porózus</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>porózus termál</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sekély hegyvidéki</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hegyvidéki</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>karszt</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>termálcarszt</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összes</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Az egyes tesztek alapján gyenge kémiai állapotú víztestek száma
A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása

6.2.2.1 Diffúz eredetű szennyezések

A felszín alatti víztestek szennyezettsége szempontjából darabszámukat és területi kiterjedésüket is tekintve a diffúz eredetű szennyezettségek a legjelentősebbek.

A diffúz eredetű szennyezettségek elemzése a VKI monitoring kutak adatain túlmenően az összes 2010 és 2012 közötti megbízható mérési adatra épül. Az értékeléshez nem csak a felszín alatti vizek kémiai adatait, hanem a felszínborítási, területhasználati jellemzőket is figyelembe vették. Utóbbira vonatkozó információk alapját a CORINE 2010-es adatbázis képezte.

A diffúz szennyezettségek ellenőrzésénél a nitrát és ammónium tartalom felszín alatti víztestben mért koncentráció eloszlását vizsgálták. Ellenőrizték a növényvédőszerek előfordulását is. A területi szennyezettségi arányok számítása több módszerrel is elkészült. A VGT1 eredményeivel történő összehasonlítás érdekében a korábbi módszerrel, illetve e módszer részleges módosításaival is készült elemzés.

A vizsgálat összefoglalt eredményei a 6-10, 6-11 és 6-12 mellékletben kerülnek bemutatásra.

A diffúz eredetű nitrát és ammónium szennyeződés vizsgálatát a 15 felszín alatti víztest közül 11 db esetében lehetett elvégezni. A teszt szerint 1 víztest állapota gyenge (k.4.2, Balaton-felvidéki karszt), jó, de gyenge kockázatúnak minősített víztest nincs (6-11. táblázat). A növényvédőszerek miatt egyetlen víztest sem kapott gyenge minősítést.
6-11. táblázat: Diffúz eredetű szennyezések vizsgálata teszt alapján gyenge állapotú víztest

<table>
<thead>
<tr>
<th>Érintett víztest azonosítója</th>
<th>Érintett víztest neve</th>
<th>Jelentősen szennyezett felszínborítás típus</th>
<th>Diffúz szennyezettség</th>
</tr>
</thead>
<tbody>
<tr>
<td>k.4.2</td>
<td>Balaton-felvidéki karszt</td>
<td>Közel hasonló mértékben mezőgazdasági, valamint rét és legelő, de szennyezettek az erdő felszínborítású felszín alatti vizek is</td>
<td>Nitrát</td>
</tr>
</tbody>
</table>

A Balaton-felvidék karsztvíztestének gyenge állapotát közel hasonló mértékben mezőgazdasági, valamint rét és legelő területhasználat okozza, de a felszín alatti víz ott is szennyezett, ahol erdő található a felszínen.

6-12. ábra: A Balaton részvízgyűjtőjén végzett peszticid hatóanyagcsoport vizsgálatok aránya

A triazint sok mérési pontban kimutatták (6-12. táblázat).
6-12. táblázat: Triazin koncentrációk víztestenként

<table>
<thead>
<tr>
<th>VOR kód</th>
<th>VIZIG kódja</th>
<th>Vízgyűjtő száma</th>
<th>Víztest kódja</th>
<th>A víztest neve</th>
<th>mérésszám (db)</th>
<th>átlag (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIQ542</td>
<td>4</td>
<td>4</td>
<td>h.4.1</td>
<td>Dunántúli-középhegység - Balaton észak-nyugati-vízgyűjtő</td>
<td>6</td>
<td>0,0985</td>
</tr>
<tr>
<td>AIQ553</td>
<td>4</td>
<td>4</td>
<td>k.4.1</td>
<td>Dunántúli-középhegység - Hévízi-, Tapolcai-, Tapolcafő-források vízgyűjtője</td>
<td>15</td>
<td>0,0259</td>
</tr>
<tr>
<td>AIQ491</td>
<td>4</td>
<td>4</td>
<td>k.4.2</td>
<td>Balaton-felvidéki karszt</td>
<td>15</td>
<td>0,0051</td>
</tr>
<tr>
<td>AIQ541</td>
<td>4</td>
<td>4</td>
<td>sh.4.1</td>
<td>Dunántúli-középhegység - Balaton északnyugati-vízgyűjtő</td>
<td>6</td>
<td>0,0755</td>
</tr>
<tr>
<td>AIQ662</td>
<td>6</td>
<td>4</td>
<td>sp.4.1.1</td>
<td>Zala-vízgyűjtő</td>
<td>166</td>
<td>0,0649</td>
</tr>
<tr>
<td>AIQ664</td>
<td>6</td>
<td>4</td>
<td>sp.4.2.1</td>
<td>Zalai-dombás, Balaton-vízgyűjtő</td>
<td>2</td>
<td>0,0130</td>
</tr>
<tr>
<td>AIQ592</td>
<td>6</td>
<td>4</td>
<td>sp.4.2.2</td>
<td>Kis-Balaton</td>
<td>3</td>
<td>0,6853</td>
</tr>
<tr>
<td>AIQ492</td>
<td>4</td>
<td>4</td>
<td>sp.4.3.2</td>
<td>Balaton a Berekkelen</td>
<td>5</td>
<td>0,0316</td>
</tr>
</tbody>
</table>

A **6-13. táblázat** és **6-13. ábra** a részvízgyűjtőkön mért növényvédőszer átlagokat mutatja be. A **6-13. ábra** jól mutatja, hogy a peszticidek közül a felszín alatti vízben a legmagasabb koncentrációban a triazinok mérhetők. A mérési eredmények alapján a részvízgyűjtőre számított átlagkoncentrációk nem érik el a megfordítási pontot.

6-13. táblázat: Részvízgyűjtőkön mért növényvédőszer átlagok

<table>
<thead>
<tr>
<th>Növényvédőszer</th>
<th>Átlagérték (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duna RV.</td>
</tr>
<tr>
<td>DDT</td>
<td>0,001383</td>
</tr>
<tr>
<td>Drin</td>
<td>0,00138</td>
</tr>
<tr>
<td>HCH</td>
<td>0,00024</td>
</tr>
<tr>
<td>HCB</td>
<td>0,000569</td>
</tr>
<tr>
<td>Karbamátok</td>
<td>0</td>
</tr>
<tr>
<td>Foszforsav észterek</td>
<td>0,001335</td>
</tr>
<tr>
<td>Fenoxi-karbonsavak</td>
<td>0,002408</td>
</tr>
<tr>
<td>Triazinok</td>
<td>0,022712</td>
</tr>
</tbody>
</table>
A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása

6.2.2.1 Pontszerű szennyezőforrások okozta terhelések vizsgálata

A pontszerű szennyezések koncentrációját jelentős mértékben csökkentheti a keveredés, illetve e szennyezésekkel terhelhető vizek általában csak töredéket képezik a receptorok vízigényeinek, vagy az ivóvíztermelést biztosító víztest vízkészletének. A szennyezési csóvák kiterjedésének elemzése alapján (3-6 melléklet) nem ismerünk jelentős kiterjedésű, a víztest egészének állapotát veszélyeztető pontoszerű szennyezőforrást, és a szennyezőforrás okozta talajvíz szennyeződést. A talajvízben, monitoring kutakban mért szerves mikroszennyezőket a 6.13 melléklet mutatja be.

6.2.2.2 Vízbázisokat veszélyeztető szennyezőanyag túllépések

A szennyezőanyagok jelenléte az ivóvizet szolgáltató vízbázisok esetében az emberi egészséget közvetlenül is veszélyeztetheti, ezért a víztesteken belül a vízbázisok kiemelt figyelmet kapnak az állapotértékelés során.

A vízbázisok besorolása egyes részvízgyűjtőkbe a védőterületek súlyponti koordinátáinak figyelembe vételével történt. Azonban adódhatnak olyan esetek, amikor a vízbázis nem arra a részvízgyűjtőre esik, ahova a víztestet sorolták. Ezért a vízbázis teszt értékelése a víztest szerinti részvízgyűjtőbe sorolásán alapszik.

A vízbázis teszett a 15 felszín alatti víztest közül 14 db esetében lehetett elvégezni. A vizsgálat alapján k.4.1 (Dunántúli-középhegység - Hévízi-, Tapolcai-, Tapolcafő-források vízgyűjtője) és sp.4.1.1 (Zala-vízgyűjtő) víztestek gyenge állapotúak és 2 darab minősíthető jó, de gyenge kockázatúak.

A k.4.1 víztest felszín alatti vizeiben általánosan magas a nitrát koncentráció értéke, amit a nyílt karsztos területen a települési és mezőgazdasági eredetű területhasználatok okoznak. A Nyirádi vízbázis a térség legjelentősebb vízbázisa, regionális vízellátó rendszert lát el vízzel, ezért az ammónium szennyeződés eredetét fontos tisztázni.
6-14. táblázat: Termelőkutak és védőidomon belüli megfigyelőkutak szennyezettsége miatt gyenge állapotú víztestek

<table>
<thead>
<tr>
<th>Víztest jele</th>
<th>Vízbázis neve</th>
<th>Szennyezés termelő kútban</th>
<th>Szennyezés nem termelőkútban</th>
</tr>
</thead>
<tbody>
<tr>
<td>k.4.1</td>
<td>Nyíirád térségi vízmű</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.4.1.1</td>
<td>Zalaszentgrót vízbázis</td>
<td>NH4</td>
<td>NH4</td>
</tr>
</tbody>
</table>

6.2-2.3 A felszín alatti víztestből származó szennyeződés következtében bekövetkező vízminőség romlása felszín vizekben

A VKI szerint a szennyezés nem veszélyeztetheti felszín-i vízfolyások ökológiai vagy kémiai állapotát. A teszt a felszín alatti vízből a felszín-i víztestbe történő esetleges szennyező anyag bejutás lehetőségét vizsgálja és azt, hogy van-e hatása a felszín alatti víztestből a felszín-i vízbe jutó szennyező anyagoknak az ökológiai állapota, illetve veszélyezteti-e a Víz keretirányelvben foglaltakat.

A tesztet a felszín alatti koncepcionális áramlási modell alapján minden felszínén található víztestre el lehet végezni, ahol a felszín-i vízfolyás megcsapolja a talajvízét. A szennyező komponensek közül a nitrátot vizsgálták. A vizsgálat eredményeit a 6-15 melléklet mutatja be.

A felszín-i vizek állapota tesztet a 15 felszín alatti víztest közül 11 db esetében lehetett elvégezni, ebből 3 állapotra gyenge, jó, de gyenge kockázatúnak minősített víztest nincs.

6-15. táblázat: A felszín alatti víztől terhelt felszín-i vízfolyások és gyenge állapotú felszín alatti víztestek

<table>
<thead>
<tr>
<th>Érintett víztest azonosítója</th>
<th>Érintett víztest neve</th>
<th>Felszín-i vízfolyás megnevezése</th>
</tr>
</thead>
<tbody>
<tr>
<td>sh.4.2</td>
<td>Balaton-felvidék</td>
<td>Burnót-patak</td>
</tr>
<tr>
<td>sp.4.3.1</td>
<td>Balaton déli vízgyűjtő</td>
<td>Táskai-külvízi-csatorna</td>
</tr>
<tr>
<td>sp.4.3.2</td>
<td>Balaton a Berekkel</td>
<td>Kéki-Séd</td>
</tr>
</tbody>
</table>

6.2-2.4 A FA víztestből származó szennyeződés felszín alatti víztől függő vizes és szárazföldi ökoszisztémákra gyakorolt hatása

A vizsgálat meghatározza, hogy a FAV testből származó szennyeződés van-e olyan hatással a felszín alatti víztől függő ökoszisztémára, amely nem összegegyezhető a Víz Keretirányelvben megfogalmazottakkal, vagy más, védett területekre vonatkozó célok. A tesztet minden olyan FAV teste el kell végezni, amelyhez kapcsolódik károsodott, vagy a károsodás kockázatával terhelt felszín alatti víztől függő vizes vagy szárazföldi élőhely. Ezek a sekély porózus víztestek.
A kémiai állapotot, a mennyiségi állapothoz hasonlóan, a kiemelt jelentőségű NATURA2000 területekre határozották meg. Első lépésben a természetvédelem értékelését kell figyelembe venni, de a természetvédelem kimondottan a víz szennyezettsége miatti károsodást nem állapított meg.

Az állapot értékelése a 2010-2012 közötti időszakot figyelembe véve, a NATURA2000 területekre eső monitoring kutak adatai alapján, és a felszín alatti víztestekre vonatkozó háttérértékek és ökológiai küszöbértékek figyelembe vételével történt.

A vizes és szárazföldi ökoszisztémák ökológia állapota alapján egyik víztest sem minősíthető gyenge állapotúnak.

6.2.2.5 Felszín alatti vízkémiai monitoring adatok trendvizsgálata és értékelés

A statisztikai trendvizsgálók a Víz Keretirányelv célkitűzéseinek megfelelően, a Vízgyűjtő-gazdálkodási Terv felülvizsgálata keretében megvizsgált, potenciálisan szennyeződést indikáló szervetlen vízkémiai komponensek és főbb paraméterek, valamint szerves vízkémiai komponensek, illetve peszticidek figyelembe vételével készült. A 2000–2012 közötti időszak adatai alapján a trendvizsgálat szerint gyengének, illetve kockázatosnak minősített víztestek esetében a szennyezőforrások közelében létesített monitoring objektumok esetleges trendet módosító hatása is vizsgálat tárgyát képezte.

A trend szerint összesített víztestminősítést a 6-12 melléklet ismerteti. Az összesített trend szerinti víztest minősítést a 15 felszín alatti víztest közül 14 db esetében lehetett elvégezni, ebből 1 állapota gyenge, jó, de gyenge kockázatúnak minősített víztest nincs.

6-16. táblázat: Trend szerint kockázatos és gyenge összesített minősítésű víztestek a 2000-2012 időszakban

<table>
<thead>
<tr>
<th>VOR kód</th>
<th>Víztest jele</th>
<th>Víztest neve</th>
<th>Összes monitorin g objektum alapján</th>
<th>Víztest neve</th>
<th>Víztest neve</th>
<th>Összes monitorin g objektum alapján</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIQ490</td>
<td>h.4.2</td>
<td>Balaton-felvidék</td>
<td>szennyezőforrás közélene létesített monitoring objektumok nélkül</td>
<td>kockázatos² (EC) gyenge (SO4)</td>
<td>kockázatos² (EC) gyenge (SO4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

gyenge: 95%-os szignifikancia szint mellett kockázatos²: szignifikáns emelkedő trend, a trend 2012-2027 közötti időszakban haladja meg a küszöbértéket

6.2.2.6 Intrúziók vizsgálata

A teszt kapcsolódik a mennyiségi állapot értékeléshez, továbbá a hosszantartó és jelentős tendenciákkal kapcsolatos értékeléshez is. A mennyiségi értékelést a minőségi értékelés előtt kell
elvégezni, amely rávilágít arra, hogy a termeléshez köthetően hol várható minőségi terhelés, azaz hol lesz meg a sós, vagy egyéb intrúzió kockázata. A felszín alatti víztestek koncepcionális áramlási modellje alapján a tesztet a porózus, a termál porózus és a termálkarszt víztestekre lehet elkészíteni.

Az intrúziós tesztet a 15 felszín alatti víztest közül 4 db esetében lehetett elvégezni, amely alapján az összes víztest jó állapotú.

Vízkivételek hatására csökkenhet a természetes, melegvízű források hőmérséklete is. Ennek oka, hogy a termelések hatására megváltozhat az egyes felszín alatti térőrészekből áramló, különböző hőmérsékletű vizek mennyisége, és keveredési aránya. 2-3 °C-os hőmérséklet csökkenés mutatható ki a Hévízi-tó esetében. A Hévízi-tó esetében nehéz meghatározni, hogy a változásokat milyen mértékben váltották ki a mesterséges és természetes hatások.

6.2.3 Felszín alatti víztestek állapotának összesített minősítése

Felszín alatti víztestek összesített minősítését a mennyiségi és a kémiai minősítés eredményei közül a rosszabbik határozza meg.

Az elvégzett tesztek alapján a 15 felszín alatti víztest közül 8 jó állapotú, míg 7 darab gyenge minősítést kapott.

Az eredmények azt mutatják, hogy a részvízgyűjtő területén 3 sekély porózus, 1 hegyvidéki, 1 sekély hegyvidéki és 2 karsztos víztest mind mennyiségi, mind minőségi szempontból rossz állapotban van.

6-14. ábra: A felszín alatti víztestek összesített állapota a Balaton részvízgyűjtőn
6.3 Védelem alatt álló területek állapotának értékelése

6.3.1 Ivóvízkivételek védőterületei

A vízkivételek védett területének kijelölése, leírása és térképi bemutatása a 2. fejezetben található. Ebben a pontban a védett területek állapotára és veszélyeztetettségére vonatkozó értékelést mutatjuk be.

A felszíni és felszín alatti vízbázisok megkülönböztetése az állapot és veszélyeztetettség szempontjából is indokolt.

Az ivóvízkivételek és védőterületeik állapotát és veszélyeztetettségének mértékét a 6-18 melléklet mutatja be.

6.3.1.1 A felszíni ivóvízbázisok állapota és veszélyeztetettsége

A 2.1.1 fejezetben ismertetett felszíni ivóvízbázisok minősítése a 6/2002. (XI. 5.) KvVM rendeletben megadott határértékek szerint történt, és a meghatározott fizikai és kémiai paraméterekre terjedt ki. A minősítéshez a környezetvédelmi hatósági monitoring keretében végzett és az országos felszíni vízminőségi adatbázisban (FEVI) nyilvántartott mérési adatokat használtak fel a 2009-2012 időszakra vonatkozóan. Az adatok és a vizsgált komponensek száma a teljes körű értékelést csak az alábbi korlátokkal tette lehetővé:

- a vizsgálati gyakoriság egyetlen esetben sem érte el az előírt, évi 20 mintaszámot;
- nem volt mérési adat az alábbi paraméterekre: fluorid, szelén, bárium, oldott vagy emulgeált szénhidrogének;
- nagyon kevés adat volt a mikrobiológiai paraméterekre (Coli, Fecalcoli, Salmonella, összes telepszám);
- valamint szórványos adatok volta csak a PAH és peszticid paraméterekre.

A minősítés eredményét a 6-17. táblázat mutatja be. A vízkivételi helyek (illetve azokhoz legközelebb lévő KTJ mintavételi helyek) értékelése alapján a felszíni vízbázisok állapota megfelelő, a felszíni ivóvízbázisok védőterületein folyó tevékenységek jelenleg nem okozzák a felhasznált felszíni víz olyan mértékű károsodását, amely a vízbázisok működését veszélyeztetné.

A rendeletben meghatározott paraméterekre vonatkozó határérték túllépés nem fordult elő, azonban az alábbi megállapítások tehetők:

- A balatoni felszín vízművek esetében a legtöbb problémát a víz hőmérsékletének nyári növekedése okozza, amikor a baktériumok egyedszáma növekszik. Villámárvizet okozó nagyobb esőzések után a vízgyűjtőről bemosódó hordalék és a vele érkező szennyezőanyagok okoznak veszélyt.
6-17. táblázat: Ivóvízbázisok minősége (Az állapotértékelés a 2009-2012 évi mérési adatok alapján készült)

<table>
<thead>
<tr>
<th>Vízfolyás, állóvíz neve</th>
<th>Vízkivétel helye (fkm)</th>
<th>Alegység</th>
<th>Érintett víztest</th>
<th>Mintavételi hely KTJ azonosítója</th>
<th>6/2002. (XI. 5.) KvVM r. 4. § szerinti megfelelés</th>
<th>1.sz.mell. szerinti megfelelés</th>
<th>Határértéket túllépő komponens(ek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balaton, déli part, Fonyód</td>
<td>-</td>
<td>4-2</td>
<td>Balaton</td>
<td>AIH049</td>
<td>101178575</td>
<td>A1</td>
<td>igen</td>
</tr>
<tr>
<td>Balaton, déli part, Balatonőszöd</td>
<td>-</td>
<td>4-2</td>
<td>Balaton</td>
<td>AIH049</td>
<td>101178564</td>
<td>A1</td>
<td>igen</td>
</tr>
<tr>
<td>Balaton, északi part, Balatonfüred</td>
<td>-</td>
<td>4-2</td>
<td>Balaton</td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>Balaton, északi part, Balatonkenese</td>
<td>-</td>
<td>4-2</td>
<td>Balaton</td>
<td>AIH049</td>
<td>101178553</td>
<td>A1</td>
<td>igen</td>
</tr>
<tr>
<td>Balaton, északi part, Balatonalmádi</td>
<td>-</td>
<td>4-2</td>
<td>Balaton</td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>Balaton, déli part, Siófok</td>
<td>-</td>
<td>4-2</td>
<td>Balaton</td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>Balaton, déli part, Balatonszéplak</td>
<td>-</td>
<td>4-2</td>
<td>Balaton</td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
</tbody>
</table>

6.3.1.2 Felszín alatti ivóvízbázisok állapota és veszélyeztetettsége

A Balaton részvízgyűjtő területén 112 üzemelő és 2 tartalék vízbázis található (összesen 114 felszín alatti vízbázis), ezekből 96 vízbázis sérülékeny, mert olyan természeti-földtani környezetben van, ahol a terepfelszín alá kerülő szennyező anyagok - még ha évtizedek alatt is de lejuthatnak a vízellátást biztosító víztömegbe. A felszín alatti vízbázisok veszélyeztetettségét a vízadó típusa alapvetően meghatározza. Sérülékenyek a talajvízbázisok, a fedetlen karsztvízbázisok, és a parti szűrésű vízbázisok. A konkrét földtani felépítéstől függően a sekély rétegvízbázisok is lehetnek sérülékenyek. Ezekben a vízbázisokon jelenthetnek kockázatot a természetes folyamatok és a prognosztizált éghajlatváltozásból eredő szélsőségek is.

A sérülékeny felszín alatti ivóvízbázisok állapotát és veszélyeztetettségét meghatározó terhelések és folyamatok a következők:

- Jogi védelem hiánya,
- Az emberi tevékenység által okozott tényleges és potenciális terhelések hatása,
A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása

6. fejezet
A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása – 143 –

Termelőkutak vagy a védőterületen belül található megfigyelőkutak szennyezettsége,

Védőterületen belül feltárt (a megfigyelőkutak által nem feltétlenül jelzett) felszíni víz, talajvíz- vagy talajszennyezések,

Területhasználathoz kapcsolódó veszélyeztetettség (belterületek és mezőgazdasági területek együttes aránya a vízbázison),

Felszíni víz szennyeződéséből fakadó veszélyeztetettség,

Vízadó földtani közig veszélyeztetettsége,

Éghajlati veszélyeztetettség (mennyiségi, vízminőségi),

Árvízi veszélyeztetettség.

A veszélyeztetettségi vizsgálatok során, a fent említett szempontokat figyelembe véve, a sérülékeny vízbázisok öt kategóriába sorolták. A legmagasabb 5. kategóriába olyan vízbázisok kerültek, melyek a kémiai minősítés során szennyeződött termelőkút miatt gyenge minősítést kaptak. A 4. kategóriába olyan vízbázisok kerültek, ahol védőterületen belüli megfigyelőkutakban szennyező komponens koncentráció túllépés, illetve pontszerű talajvíz- vagy talajszennyezést mutattak ki. A veszélyeztetett vízbázisok (3. kategória) közé tartoznak azok, ahol a belterületek és a mezőgazdasági területek együttes aránya meghaladja a 75%-ot, továbbá ahol a vízadó földtani közig, árvízi, éghajlati és a felszíni víz okozta veszélyeztetettség indokolta. A mérsékelten veszélyeztetett (2. kategória) akkor került egy vízbázis, ha a belterületek és a mezőgazdasági területek együttes aránya 40%-75% közé esik, vagy ha az egyéb veszélyeztetettségi vizsgálatok indokolták. Azok a vízbázisok, amelyeket nem veszélyeztetnek a fent említett terhelések és folyamatok, az 1. kategóriába kerültek.

A vízbázisok besorolása egyes részvízgyűjtőkbe a védőterületek súlyponti koordinátáinak figyelembe vételével történt. Ezen a felosztáson alapszik a vízbázisok veszélyeztetettségének értékelése.

6.3.1.2.1 Jogi védelem hiánya és a biztonságba helyezés elmaradása

A közcelű felszín alatti ivóvízbázisok esetében védőterületeket és védőidomokat hatósági határozattal kötelező kijelölni.

Az adatszolgáltatás szerint a határozatok kiadásában jelentős elmaradás van. A nyilvántartás szerint országos szinten 613 darab közcelű felszín alatti vízbázis rendelkezik védőterületi határozattal. A Balaton részvízgyűjtő területén összesen 37 vízbázisra készült el védőterületi határozat, ebből 33 darab sérülékeny vízbázis. A fennmaradó 63 darab sérülékeny vízbázisnak nincs jogerős védőterületi határozata.

A védőterületek kijelölésének a célja, hogy a hatósági határozatok a 123/1997 (VII.18.) jogszabály szerint kötelezők a területhasználatot a vízbázis védelmének megfelelő, nem környezetszennyező tevékenységre, egyes tevékenységeket kategóriikusan tiltanak vagy korlátozzanak, illetve meglévő szennyeződések esetén előírják a szennyeződés felszámolását, vagyis biztonságba helyezzék a vízbázist. Az üzemeltető feladata a továbbiakban, hogy a védőterületen nyomonkövesse, és a hatóságnak bejelentse a változásokat, vagyis biztonságban
tartsa a vízbázist. Az üzemeltető feladata a szennyeződések vizsgálatára a monitoring rendszer üzemeltetése.

A legnagyobb veszélyforrást az jelenti, hogy védőterületi határozatok hiánya miatt, a fent említett intézkedések és korlátozások nincsenek jogilag szabályozva.

6.3.1.2.2 Az emberi tevékenység által okozott tényleges és potenciális szennyezések

Termelőkutak vagy a védőterületen belül található megfigyelőkutak szennyezettsége

A részvízgyűjtő területén a Zalaszentgróti vízbázis védőterületére eső megfigyelőkutakban mutattak ki ammónium túllépést, amely már a termelőkútban is megjelent. A vízbázis összes védendő vízkészlete 5 420 m³/nap.

Védőterületen belül feltárt pontszerű talajvíz- vagy talajszennyezések

A felügyelőségi adatszolgáltatása alapján nincs olyan vízbázis, ahol a feltárt pontszerű talaj- illetve talajvízszennyezések veszélyt jelentenének az ivóvízbázis számára.

Területhasználatohoz kapcsolódó veszélyeztetettség

A diffúz szennyezések nagy területről érkeznek kis koncentrációban, a kibocsátások valamilyen területhasználati kapcsolódnak, ebből kifolyólag veszélyeztetik a felszín alatti vizeket. A területhasználati térképeket és a védőterületekre vonatkozó térképi állományt összevetve, a részvízgyűjtő területén 41 darab sérülékeny vízbázisnál (43%) a belterületek és a mezőgazdasági területek együttes aránya nagyobb, mint 75%. Ezek a vízbázisok a 3. (veszélyeztetett) kategóriába kerültek.

Felszíni víz szennyeződéséből fakadó veszélyeztetettség

Vízminőségi veszélyeztetettséget okoz a felszíni vízfolyás érkező szennyezőanyag. A legveszélyezetettebbek a karsztvízbázisok, ahol a mészőknyelő szakaszain a szennyezett felszín víz elnyelődhethet, így a talajvízbázisok 2. (mérsékelten veszélyeztetett) kategóriába kerültek.

6.3.1.2.3 A földtani közeg állapotában történő változás

A Balaton részvízgyűjtő területén jelentős veszély áll fenn a karsztvízbázisok (Bakony, Balaton-felvidék) esetében. Főként a bányászat, a felszín megbontása és a víztartó rétegek kitermelése okozhatja a problémát.

Földtani közeg állapotában bekövetkező változás alapján, a részvízgyűjtő területén összesen 30 (31%) vízbázist került a 3. (veszélyeztetett) kategóriába.

Kavics-, homok- és agyagbányák művelése során a védett felszín alatti víz felszínre kerülhet, így a talajvízbázisok 2. (mérsékelten veszélyeztetett) kategóriába kerültek.

6.3.1.2.4 Az éghajlat változásából eredő potenciális veszélyek

Mennyiségi és minőségi változás szempontjából jelentős veszély áll fenn a karsztvízbázisok esetében. Főként az extrém csapadék események növekedése okozta felszín lefolyás által szállított szennyező anyag bemosódás jelenthet problémát.

Az éghajlat mennyiségi változásából fakadó potenciális veszély 40 darab (42 %) vízbázisnál áll fenn, míg minőségi változásából adódó veszély 30 darab (31%) vízbázisnál jelentős.
6.3.1.2.5 Árvízi veszélyeztetettség

A részvízgyűjtő területén a villámárvizek jelentős veszélyt jelentenek. Ilyenkor a vízgyűjtőről szennyezőanyag mosódhat be a víznyelőkön keresztül a vízbázisokba, ami leginkább a karsztvízbázisokat fogja veszélyeztetni. A részvízgyűjtő területén 30 darab (31%) vízbázis 3. (veszélyeztetett) kategóriába került.

6.3.1.2.6 Összevont értékelés

Az ivóvízbázisok veszélyeztetettsége a fenti szempontok szerint összevontan is értékelhető. A vizsgált 96 (összes védendő vízkészlet 176 636 m³/nap) vízbázis megoszlása a veszélyeztetettségi kategóriák között:

1. kategória jó állapotú vízbázis: 11 vízbázis, védendő vízkészlet: 89 137 m³/nap,
2. kategória mérsékelten veszélyeztetett vízbázis: 12 vízbázis, védendő vízkészlet: 2 114 m³/nap,
3. kategória veszélyeztetett vízbázis: 72 vízbázis, védendő vízkészlet: 79 965 m³/nap.
4. kategória termelőkútból kimutatott szennyezés: 1 vízbázis, védendő vízkészlet: 5 420 m³/nap

6-15. ábra: A felszín alatti sérülékeny ivóvízbázisok veszélyeztetettsége a Balaton részvízgyűjtőn

6.3.2 Nitrát- és tápanyagérzékeny területek

Magyarországon az eutrofizáció - az ország speciális földrajzi fekvése (topográfiai viszonyok: domborzat, medence-fekvés), geológiai és éghajlati adottságai (alapkőzet, talajtani adottságok, erózió, kontinentális klíma), hidrológiai sajátosságai (folyók mederesése, kis fajlagos lefolyás-nagy tartózkodási idő, magas a sekély, endorheikus tavak aránya), illetve a vizek fizikai és kémiai karaktere miatt - mind a folyók, mind a tavak esetében részben emberi hatásra bekövetkező,
részben természetes jelenség. Folyóink egyharmada eutróf, közel fele potenciálisan eutróf kategóriába sorolható, tavaink túlnyomó többsége nem eutróf, közel harmada potenciálisan eutróf.

Nagyobb vízfolyásaink többsége, néhány közepes vízfolyás, valamint a mezőgazdasági művelés alatt álló területeken átfolyó vagy azok határán folyó kisvízfolyások és öntőző-csatornák eutróf, illetve potenciálisan eutróf minősítéssel jellemzőek.

A trofitás értékelése mellett a nitrát-jelentésben a trofitási mutatók változásának vizsgálata is elkészült (6-18. táblázat) országos szinten. A mutatók változása jelzi, hogy hogyan egyszerre vannak jelen növekvő és csökkenő trofitátérdnek (6-19. táblázat).

6-18. táblázat: Trofitási mutatók változása az előző és a jelenlegi megfigyelési időszak között

<table>
<thead>
<tr>
<th>Változás</th>
<th>Klorofill-a nyári átlagnál</th>
<th>PO4-P éves átlagnál</th>
<th>ÖP éves átlagnál</th>
</tr>
</thead>
<tbody>
<tr>
<td>növekvő</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erőteljesen</td>
<td>33,0 %</td>
<td>19,3 %</td>
<td>20,3 %</td>
</tr>
<tr>
<td>gyengén</td>
<td>6,1 %</td>
<td>4,7 %</td>
<td>7,5 %</td>
</tr>
<tr>
<td>stabil</td>
<td>8,0 %</td>
<td>4,2 %</td>
<td>8,5 %</td>
</tr>
<tr>
<td>csökkenő</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erőteljesen</td>
<td>45,3 %</td>
<td>69,8 %</td>
<td>48,1 %</td>
</tr>
<tr>
<td>gyengén</td>
<td>6,6 %</td>
<td>1,9 %</td>
<td>15,6 %</td>
</tr>
</tbody>
</table>

6-19. táblázat: Trofitás trend állóvizekben és folyóvizekben az előző és a jelenlegi megfigyelési időszak között a mintavételi helyek százalékában

<table>
<thead>
<tr>
<th>Eutrofizációs trend</th>
<th>erőteljesen növekvő</th>
<th>gyengén növekvő</th>
<th>stabil</th>
<th>gyengén csökkenő</th>
<th>erőteljesen csökkenő</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folyók klorofill-a nyári átlag</td>
<td>35,1</td>
<td>5,4</td>
<td>8,1</td>
<td>6,5</td>
<td>44,9</td>
</tr>
<tr>
<td>Folyók nitrát átlag</td>
<td>4,3</td>
<td>8,0</td>
<td>51,3</td>
<td>29,9</td>
<td>6,4</td>
</tr>
<tr>
<td>Folyók PO4-P átlag</td>
<td>18,7</td>
<td>5,3</td>
<td>4,3</td>
<td>2,1</td>
<td>69,5</td>
</tr>
<tr>
<td>Folyók ÖP átlag</td>
<td>19,3</td>
<td>5,9</td>
<td>9,6</td>
<td>16,6</td>
<td>48,7</td>
</tr>
<tr>
<td>Tavak klorofill-a nyáriátlag</td>
<td>20,0</td>
<td>12,0</td>
<td>8,0</td>
<td>8,0</td>
<td>52,0</td>
</tr>
<tr>
<td>Tavak ÖP átlag</td>
<td>28,0</td>
<td>20,0</td>
<td>0,0</td>
<td>8,0</td>
<td>44,0</td>
</tr>
</tbody>
</table>

A növekvő trendet mutató vízgyűjtők védelmének érdekében, tekintettel a felszíni vizek tápanyag-terhelésének jelentős mértékére, a nitrát-érzékeny területek növelésével a védettség fokozására tettünk javaslatot. A javaslatunk alapján a nitrát-érzékeny területek összeségében 23,1%-kal növekednek.

A tápanyagterhelésre érzékeny vízgyűjtők kijelölésével a 91/271/EEC direktíva a szennyítási-tisztításra fokozott tápanyag eltávolítást ír elő azokon a területeken, melyeken a felszíni vízbe vezetett tápanyagterhelés az arra érzékeny vizek eutrofizációdását okozhatja.
Magyarország a Duna-medencében helyezkedik el. A Fekete-tenger védelme érdekében - földrajzi helyezte miatt - a tápanyagáltatósságra vonatkozó előírásoknak meg kell, hogy feleljen. A hazai szabályozás ezen túlmenően is kijelöl tópályag-érzékeny területeket.

A 6-8 melléklet a tápanyagtérhelésre érzékenyen kijelölt felszíni vizek állapotértékelését mutatja be a részvízgyűjtőn. A mellékletben felsorolt 92 víztest a hazai szabályozás értelmében fokozott védelem alatt áll. A viztesteket az ökológiai minősítés elemei közül azokkal jellemzettük, melyek a trofitási állapotot közvetlenül vagy közvetett módon jellemezik. Megadhatuk egy integrált, a trofitási állapotot jellemző minősítést is: eszerint a 92 víztestből 56 (61%) megfelelő, azaz a minősítő elemek nem utalnak jelentős tópályagterhelésre vagy magas eutróf állapotra. 20 víztest etetében az állapot kifogásolt, további 16 víztest adathiány miatt nem volt értékelhető. Összességében megállapítható, hogy ezeknek a védelem alatt álló víztesteknek a trofitási állapota az országos átlagnál jobb, tápanyagterhelésük az esetek többségében nem jelentős.

6.3.2.1 Felszín alatti vizek

A Víz Keretirányelv szempontjából védettnek számít minden olyan terület, illetve felszín alatti tér, melyet a felszíni és/vagy a felszín alatti vizek védelme érdekében, vagy közvetlenül a víztől függő élőhelyek és fajok megőrzése céljából valamely jogszabály erre kijelöl. Ezek közé tartoznak a tópályag- és nitráterzékeny területek.

Csapadékvizsgányok

A négy éves időszakok csapadék átlaga nem mutat eltérést a sokéves átlagoktól, ennek ellenére lényeges a csapadékoszlás éves és területi eloszlása, mivel a rendkívül nagy csapadékok hatására a talajból minden bizonnyal a tópályagok nagyobb mértékben mosódtak ki, amit az értékeléskor figyelembe kell venni.
Felszín alatti vizek állapotértékelése

6-16. ábra: A nitrát monitoring pontok eloszlása földhasználat szerint (2008-2011)

A felszín alatti vizeink nitrát szennyezettségi állapota közepesnek mondható, hiszen a 2008-2011 periódusban összesen 121 monitoring ponton (6,9%) haladta meg az átlagos nitrát tartalom az 50 mg/l értéket. További 40 olyan pont van, ahol az átlag ugyan 50 mg/l alatti, de a maximális nitrát koncentráció (legalább egy alkalommal) nagyobb volt, mint 50 mg/l. A határérték feletti koncentrációk csak a 30 m-nél sekélyebb nyílt tükör felszín alatti víztípusoknál, illetve kis számban a karsztvizek esetében fordultak elő (6-20. táblázat).
6-20. táblázat: Felszín alatti vizek átlagos nitrát koncentrációinak (mgNO₃/l) megoszlása 2008-2011 közötti időszakban

<table>
<thead>
<tr>
<th>Víztípus</th>
<th>Pontok %-os megoszlása (mg NO₃/l)</th>
<th>Összes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><25</td>
<td>25-39,99</td>
</tr>
<tr>
<td>Nyílt tükrű sekély felszín alatti víz (0-5 m)</td>
<td>77,1</td>
<td>6,6</td>
</tr>
<tr>
<td>Nyílt tükrű felszín alatti víz (5-15 m)</td>
<td>74,5</td>
<td>7,2</td>
</tr>
<tr>
<td>Nyílt tükrű felszín alatti víz (15-30 m)</td>
<td>85,3</td>
<td>4,9</td>
</tr>
<tr>
<td>Nyílt tükrű mély felszín alatti víz (>30 m)</td>
<td>87,5</td>
<td>12,5</td>
</tr>
<tr>
<td>Fedett (captive) felszíni víz</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Karsztvíz</td>
<td>86,6</td>
<td>6,4</td>
</tr>
<tr>
<td>Összes</td>
<td>87,8</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Az átlagos koncentrációk alapján a veszélyeztetett (40-50 mg/l nitrát tartalmú) monitoring pontok száma 25 db (1,4%), a maximális koncentrációk esetében 26 db (1,5%). A maximum koncentrációk alapján számolva közelítünk 10 esetben prognosztizálható, hogy a változás eléri az 50 mg/l értéket a következő 4 éves periódus végére.

A sekély vízadójú és különösen a parti szűrésű kutak esetében figyelembe kell venni, hogy a nitrát koncentrációk jelentősen ingadoznak aszerint, hogy a folyóból vagy a talajból érkezik-e a vízutánpótlódás, illetve nagy mennyiségű csapadék hatására történt-e tápanyag kimosódás a talajból.

Az éghajlatváltozás hatásainak értékelése érdekében megvizsgáltattuk a tápanyagmérleg éves változását, amelyhez a 4M növénytermesztési modellt alkalmazták. A modellszámításokat a CC-WaterS projekt keretében a Talajtani és Agrokémiai Kutató Intézet végezte. A modellben ötféle Magyarországon jellemző talaj és nyolc tipikus növény (pl. búza, kukorica) figyelembe véve, 150 éves éghajlati időssorral (A1B éghajlatváltozási forgatókönyv CNRM globális modell) számítottál bennünk a nitrogén kimosódását három féle nitrogén trágya hatóanyag bevitel (40/70/100 kg/ha/év) vizsgálata mellett. A modellleírás eredményei alapján megállapítható, hogy a kimosódás éves értékei igen nagy szórást mutatnak jelezve azt, hogy a kimosódás jellemzően hullámokban történik. Nagy-, illetve kismértékű kimosódással jellemzett évek/periodusok követik egymást. A kimosódás bizonytalansága (sorozat) kis mértékben ugyan, de függ a trágyázás intenzitásától: intenzívebb szinten nagyobb kimosódási szélsőségeket tapasztalhatunk. A nitrát-kimosódásra jelentősebb hatással bír a csapadékeloszlás, mint a tápanyag bevitel többlete, viszont a nitrátérzékenység szempontjából veszélyeztetettebb talajoknál a szélsőségek jelentkezése és így a kimosódás mértéke fokozottabb. Mindezek alapján a felszín közeli vizekben mért nitrát koncentráció ingadozásai is megmagyarázhatóak.

A fedett nyomás alatti rétegvizeinkben az átlagos nitrát tartalom sehol sem haladta meg a 25 mg/l-es koncentrációt. Ennek oka a felszín alatti vízáramlás lassúsága a magyarországi porózus vízadókban (vertikálisan 0,05-0,1 m/év, horizontálisan 2-4 m/év). Regionális, intenzív leáramlású területeken a beszivárgás átlagosan 50-100 mm/év, így az utóbbi 50 évben beszivárgott víz.
jelenleg a talajvíz felső 10-20 méterében található, feláramlási területeken még ennél is sekélyebben.

Magyarországon az 1950-es években kezdődött az intenzív mezőgazdasági termelés, a legnagyobb műtrágya felhasználás 1970-90 között volt, amikor duplája volt a vízsgált időszak átlagos 50-56 Nkg/ha/év értéknek, és az állatállomány (így a trágya felhasználás is) négyösszöröse volt a mai értékeken. Sokkal nagyobb nitrát terhelés érte ekkor a talajvizeket, mint a 2004-2011 közötti időszakban, amikor az összes trágyafelhasználás mennyisége átlag 70-80 Nkg/ha/év volt. Az 1970-90 között beszivárgott talajvíz sok helyen már 5 méternél mélyebben található, ezért valószínűsíthető, hogy az 5-15 m közötti „1a” víztípusban gyakoribb (14,9%) az 50 mg/l-t meghaladó átlagos nitrát tartalom, mint az 5 méternél sekélyebb „0” típusúaknál (12,8%). Ezzel párhuzamosan a legsekélyebb vízrétegben a szélsőséges időjárás okoz kimutatható változásokat a nitrát szennyezettségében.

A karsztvíz monitoring pontok 6,4%-ában haladja meg az átlagos nitrát tartalom az 50 mg/l értéket, ezek közül 6 karsztforrás. Korábbi vizsgálataink szerint a források vízminőségét elsősorban a fakadási hely környezetében bekövetkező szennyeződés szabja meg. Ez azt jelenti, hogy a forrás vízminősége sem reprezentálja a teljes vízgyűjtőterület vízminőségét. A források kémiai vizsgálatai is igazolják, hogy a belterületeken általában szennyezettebb a felszín alatti víz, mint a külterületeken.

A nitrát tartalom változásának trendjét 1720 monitoring pontron lehetett vizsgálni. Az átlagos nitrát koncentráció alapján, az összes monitoring pontra számolt trend összességében kedvező, mivel a pontok 10,4%-ánál tapasztalunk gyenge (+1 - +5 mg/l/4év), 5,7%-ban erős növekedést (>+5 mg/l/4év). A gyengén és az erősen növekvő trend összege így 16,1%, ami kissé alacsonyabb érték, mint a gyengén és erősen csökkenő trendek 16,6%-a. Az átlagos koncentrációk alapján a nyílt tükrű felszín alatti monitoring pontok esetében azonban nagyobb a növekvő trendek összege, mint a csökkenő trendeké. A maximum nitrát koncentráció alapján, az összes monitoring pontra számolt trend összességében kedvezőtlenebbe, mint az átlagkoncentráció esetében. Megállapítható, hogy a sérülékeny zónába (0, 1a, 1b és 3) a 2008-2011 közötti időszakban, összehasonlíta a megelőző időszakkal, több helyen kiugró értékeket mért a nitrát tartalomban, amely a 2010. évi szélsőséges csapadék események eredménye lehet. A maximum koncentrációk alapján nitrátérzékeny területeken kisebb a monitoring pontok nitrát tartalmának időbeli változása, mint a nem nitrátérzékeny területeken. A nem nitrátérzékeny területeken emelkedő trenddel jellemezhető 73 monitoring pont 49 esetben (67,1%-ban) sekély TIM pontok (Talajinformációs Monitoring) mellé fűrt, a környezeti változásokra nagyon érzékenyen reagáló vízmintavételi hely.

<table>
<thead>
<tr>
<th>pontok %-os értéke (nitrát trend)</th>
<th>maximum NO3- értékénél</th>
<th>éves átlag</th>
</tr>
</thead>
<tbody>
<tr>
<td>növekvő</td>
<td>9,94 %</td>
<td>5,7 %</td>
</tr>
<tr>
<td>erőteljesen</td>
<td>12,85 %</td>
<td>10,41 %</td>
</tr>
<tr>
<td>gyengén</td>
<td>56,51 %</td>
<td>67,33 %</td>
</tr>
<tr>
<td>stabill</td>
<td>12,5 %</td>
<td>10,29 %</td>
</tr>
<tr>
<td>csökkenő</td>
<td>8,2 %</td>
<td>6,28 %</td>
</tr>
</tbody>
</table>
A 2008. évi és a 2012. évi jelentések statisztikai összefoglaló eredményeinek összehasonlítása a felszín alatti vizek minőségi állapotának romlását mutatja a két időszak között. Ebben azonban jelentős szerepet játszik az is, hogy a védett vízadókat monitorozó és így kiváló vízminőségű pontok arányát jelentősen csökkentettük a veszélyeztetett sűrűlékeny vízadókhoz képest a jelen nitrát országjelentéshez.

Nitrátérzékeny területek kijelölése

Hasonlóan a felszín alatti vizekhez, a 2008-2011 időszak vízminőségi vizsgálatai és azok elemzése alapján a felszín alatti vizek esetében is további nitrátérzékeny területek kijelölése szükséges. A felszín alatti vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása – 151 –

A 2013-ban kijelölt, jelentős mértékben (24%) növekedett nitrátérzékeny területekre (ország területének 70%-a) vonatkozó állapotértékelés 2016-ban esedékes.

A cselekvési programok intézkedéseinek végrehajtására és hatására vonatkozó értékelés

A 2008-2011 időszak folyamán a környezetvédelmi hatóság által felkeresett, nitrát érzékeny területen található telepeknél átlagosan a környezetvédelmi hatóság által felkeresett, nitrát érzékeny telepek átlagos száma 577 volt, mely jelentős mértékű növekedés az előző ciklus átlagértékéhez képest. A helyszíni ellenőrzések tapasztalata alapján az állattartó telepek több mint 70%-a felelt meg a hatályos jogszabályi előírásoknak a trágyatárolók műszaki kialakítását, illetve tárolási kapacitását illetően, amely szintén lényeges javulást mutat az előző ciklushoz képest, és amely a cselekvési programok végrehajtásának hatékonyságát is jelzi.

A cselekvési programok intézkedéseinek végrehajtására és hatására vonatkozó értékelés

A 2008-2011 időszak folyamán a környezetvédelmi hatóság által felkeresett, nitrát érzékeny területen található telepeknél átlagosan a környezetvédelmi hatóság által felkeresett, nitrát érzékeny telepek átlagos száma 577 volt, mely jelentős mértékű növekedés az előző ciklus átlagértékéhez képest. A helyszíni ellenőrzések tapasztalata alapján az állattartó telepek több mint 70%-a felelt meg a hatályos jogszabályi előírásoknak a trágyatárolók műszaki kialakítását, illetve tárolási kapacitását illetően, amely szintén lényeges javulást mutat az előző ciklushoz képest, és amely a cselekvési programok végrehajtásának hatékonyságát is jelzi.

A cselekvési programok intézkedéseinek végrehajtásában a legnagyobb probléma a környezetvédelmi hatóság által felkeresett, nitrát érzékeny területen található telepeknél a környezetvédelmi hatóság által felkeresett, nitrát érzékeny telepek átlagos száma 577 volt, mely jelentős mértékű növekedés az előző ciklus átlagértékéhez képest. A helyszíni ellenőrzések tapasztalata alapján az állattartó telepek több mint 70%-a felelt meg a hatályos jogszabályi előírásoknak a trágyatárolók műszaki kialakítását, illetve tárolási kapacitását illetően, amely szintén lényeges javulást mutat az előző ciklushoz képest, és amely a cselekvési programok végrehajtásának hatékonyságát is jelzi.

Előrejelzés a felszín alatti vízminőség jövőbeni változásáról
A tápanyag-gazdálkodási szaktanácsadási rendszerek további fejlesztése szükséges annak érdekében, hogy a nitrogén trágyázási adagok minél inkább összhangban legyenek a növény igényével, valamint a szélsőséges időjárási események hatása minél kisebb legyen. Környezetvédelmi szempontból örvendetes tény, hogy a trágyázás költségei jelenleg és várhatóan a jövőben is olyan magasak lesznek, hogy a gazdaságos növénytermesztés és a haszon maximalizálása is az optimális tápanyag bevitel felé tereli a gazdálkodókat. Tekintettel arra, hogy az új környezetbarát és költségéthatékony trágyázási szaktanácsadási rendszerek a 2000-es évek második felében kezdtek el alkalmazni és ezekre való átállás önkéntes, így a kedvező hatás érvényesülésére is hosszabb időre van szükség.

A felszín alatti vizes monitoring pontok adatainak kiértékelése alapján a felszín alatti vizek állapota nagyon lassan, de javul, miközben újabb területek nitrátérzékeny kijelölésére van szükség. A lokális hatások miatt a monitoring pontok önmagukban nem értékelhetők, ugyanakkor feltételezve, hogy a kijelölt mintavételi helyeink reprezentálják a magyarországi helyzetet a nitrát-szennyezettség tekintetében, környezetvédelmi szempontból megyugtató megoldás csak az lenne, ha az optimális (környezetbarát és költségéthatékony) tápanyag-gazdálkodási módszereket általánossan alkalmaznánk Magyarország teljes területén (mind a nitrátérzékenyek kijelölt, mind a nem kijelölt területeken).

6.3.3 Természetes fürdőhelyek

A fürdővíz használat által érintett víztestek jellemzése az Országos Közegészségügyi Intézet 2010-2014 évekre készült és lejelentett minősítési eredményei alapján történt.

A 2006-ban életbe lépő új „fürdővíz” irányelv (2006/7/EK) a korábbi előírásoknál szigorúbb követelményeket támasztott a fürdővizek minőségével és azok monitorozásával szemben egyaránt. Az irányelv szerint a minőségi értékelést első alkalommal a 2011. évi fürdési idényt követően volt kötelező jelenteni, de már a 2010-es évi minősítés is rendelkezésre állt az új értékelési rendszer szerint.

Az értékel 5 évben 240 fürdőhely jellemzésére került sor országos szinten. A strandok kijelölése évenként változik és a kijelölt fürdőhelyeknek nem mindegyikére készül jelentés. A 6-22. táblázatban a minősítés eredményeit összesítettük országos szinten. Az utolsó oszlopban a teljes időszakra legjellemzőbbnek tekintett értéket vettük alapul a statisztikákhoz. Az összes minősítettem (240) 174 fürdőhelyen a vízmínőség megfelelt, ez 72%-os megfelelést jelent. A strandok 56 %-án stabilan kiváló a vízmínőség. Ezek az értékek alacsonyabbak a megelőző vízgyűjtő-gazdálkodási tervben közölt arányoknál (megfelelő 92 %, kiváló 62 %), azonban ez nem jelent állapot romlást, csupán a nem értékelő vagy valamely okból nem minősíthető helyek aránya növekedett (60 db, 25 %). Jelenleg a kijelölt fürdőhelyekből mindössze 6 db (2,5 %) olyan eset van, ahol a nem megfelelő vízmínőség tartósan akadályozza a fürdőzést.
6-22. táblázat: Fürdőhelyek minősége (az állapotértékelés a 2010-2014 évi jelentések alapján készült)

<table>
<thead>
<tr>
<th>2006/7/EK irányelv szerinti osztálybesorolás</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2010-2014 időszak átlaga</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kiváló</td>
<td>116</td>
<td>168</td>
<td>138</td>
<td>116</td>
<td>161</td>
<td>135</td>
</tr>
<tr>
<td>2 Jó</td>
<td>27</td>
<td>34</td>
<td>25</td>
<td>27</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>3 Megfelelő</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4 Kifogásolt</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5 Nem megfelelően mintázott</td>
<td>58</td>
<td>5</td>
<td>42</td>
<td>58</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>6 Új kijelölés</td>
<td>20</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>7 Változás miatt nem minősített</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Összes minősített fürdőhely</td>
<td>237</td>
<td>228</td>
<td>227</td>
<td>237</td>
<td>236</td>
<td>240</td>
</tr>
</tbody>
</table>

Az új értékelési rendszerben a vízminőségi haváriákat és a bezárások okát is jelenteni kell. Az öt évben összesen 5 alkalommal állt elő olyan kedvezőtlen vízminőségi helyzet, melyet a jelentések dokumentálnak. Ebből 3 alkalom a Balatonon volt (Zamárdi egyik strandja és két strand Gyenesdiáson, valamint 2014-ben a Tiszán Mindszentnél és a Hegyhátszentjakabi halastavon). Ezek a haváriák olyan rendkívüli helyzetek, melyek oka lokális szennyezés, nincsenek összefüggésben a víztestek állapotával. Továbbá a folyóvízi strandokon több alkalommal akadályozta a fürdőzést a levonuló árhullám (legtöbbször 2010 és 2013 években).

Az értékel 240 fürdőhelyből 198 található közvetlenül víztesten, melyből a Balaton részvízgyűjtőn található összesen 138 strand. Ezeknek a standoknak a vízminőségi jellemzését adtuk meg a 6-23. táblázatban.

6-23. táblázat: Természetes fürdőhely kijelölése által érintett víztesteken a fürdőhelyek jellemző minősítése 2010-2014 időszakban

<table>
<thead>
<tr>
<th>Érintett víztest</th>
<th>fürdőhelyek száma</th>
<th>2006/7/EK irányelv szerinti minősítése</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIH049 Balaton</td>
<td>138</td>
<td>1 kiváló</td>
</tr>
</tbody>
</table>

Potenciálisan intézkedést igénylő, a fürdőhely szempontjából nem megfelelő minősítésűek azok a víztestek, melyek strandjai több alkalommal nem feleltek meg a kötelező határértékeknél. 2010-2014 évi értékelés szerint ez a Balaton részvízgyűjtőt nem érinti, hiszen a fürdővíz követelmények teljesítését tekintve továbbra sincs probléma. A balatoni strandok túlnyomó többségben kiváló vízminőségük, csak elvétve fordul elő ettől eltérő állapot.

Az állapotértékelés során vizsgálni szükséges, hogy az esetenként vagy rendszeresen nem megfelelő minőségű strandok esetében teljesül-e a szennyvízbevezetések védőtávolságára.
vonatkozó követelmény. A kifogásolt vizek többségénél található a védőtávolságon belül kommunális vagy ipar jellegű szennyvízbevetés. Ezek tényleges hatását a fürdőhelyek vízminőségének biztosítása érdekében fel kell tární, szükség esetén a háttér-szennyezés mértékének megállapítására vizsgálati monitoringot kell végezni.

6.3.4 Természeti értékei miatt védett területek

A Balaton és a Zala közös vízgyűjtője, hazánk egyetlen zárt vízgyűjtője. A keletkező és összefolyó vizek a Balatont táplálják. A Balaton a kapcsolódó védett területek táji sokszínűségével és kimagasoló élőhelyi és faji értékeivel kiemelkedő jelentőségű terület. A vízzel összefüggő ökológiai problémák jellege alapján 3 jellemző terület határolható le:

- a Balaton, Kis-Balaton és a hozzájuk kapcsolódó berkek, vizes élőhelyek rendszere
- a Zala
- a kiviszonyfolyások

A Balaton maga és hajdani sekélyvízi öblözetei, mint pl. az alegységhez tartozó Tapolcai-medence és Nagyberek már önmagukban is jelentős arányban képviselik a víztől függő védett természeti területeket és a változatos élőhelyeket. A Balaton élőhelyei közül jellemzően károsodottak a természetes eutróf tavak (3150), a kékperjés láprétek (6410) elnevezésű élőhelyek.

A vizek állapotával összefüggő károsodás elsősorban a parti régió természeti növényzetének degradációja, visszaszorulása, fragmentálódása, a természetes flóra és fauna elszegényedése, a fajosztálytétel megváltozása, a gyomosodás. Általában tehát a fajszám csökkenése, adventív és invazív, illetve zavaró tűző fajok előretörése, érzékeny óshonos állat- és növényfajok valamint élőhelyek visszaszorulása a jellemző.

Ezek a károsodások főleg a nem ökológiai szempontú vízszintszabályozásra, a tömegturizmusból eredő terhelésekre, a természetes part alacsony arányára, a mederben lévő nagyméretű mesterséges építmények (kikötők, kőszórások) nagy számára, a faunaigen elemek jelenlétre és azok folyamatos telepítésére (tehát a nem ökológiai szemléletű hal- és nádgazdálkodásra), a bejárók nádas-fragmentáló hatására vezethetők vissza. E problémák kezelésében alig történt előrelépés.

A kevés fejlesztés egyike a Kis-Balaton Vízvédelmi Rendszer II. ütem megvalósítása, melynek fontos eleme a Balatonvízi belvízöblözet elaráspásítása, az Ingói-berek terheléseinek csökkentésével és vízszintje szabályozhatóságának - a természetvédelmi igények megfelelő - megteremtésére, valamint a Fenéki-tó vízzele meg el nem árasztott területeinek a Zala vízjárását letáncoló előírása, a hajdan volt Kis-Balaton vízjárásának letánczása. A kékperjés láprétek megőrzését szolgálja pl. a Vindornya-láp élőhelyrekonstrukciója.
A Zala vidék védett területeit tekintve is sajnos általános a flóra- és fauna elszegényedése, az adventív, idegenhonos növény- (és állat-) fajok térhódítása, a szárazodással összefüggő állapotátalakulás, a nem megfelelő gyepgazdálkodás, a helytelen mező- és erdő-gazdálkodás. A vízfolyások túlzott szabályozása, néhol átjárhatatlansága.

A Zalavölgy egyik legértékesebb élőhelyének, a Batyki láprétnak a megfelelő vízellátását, vízkormányzását hivatottak biztosítani a rekonstrukció keretében épített zsilipek, átereszek (6-17. ábra).

6-17. ábra: A Batyki láprét rekonstrukciója

Természetvédelmi elvárás lehet a szabályozott medrekből a víz visszaterelése a még meglévő természetes medrekbe, vagy kanyarulatok kiépítése a mesterséges mederben. A lakott területeken átmenő patakok esetében problémát jelenthet még a tisztított, esetleg tisztítatlan szennyvíz bevezetése.

Az időjárás szárazodása és az ebből következő vízhiány is jelentős problémák kiváltója, mert számos patak nyáron gyakran kiszárad, élővilága elpusztul. Ezen patakok esetében a vízgyűjtőben a vízvisszatartás javítása kívánt. Fontos lenne a vízvisszatartás javítása kívánt. Fontos lenne a vízgyűjtőjükön a folyamatos erdőborítás biztosítása, a patakok árnyalásának megoldása. Mindezek miatt a védett élőhelyek károsodása a zsilipek mentén is kifejezett, jellemző a gyomosodás, általában a szárazodás miatti degradáció. Az élőhelyek feldarabolódnak, szűkülnek, a patakfauna szegényedik, terjednek az adventív és invazív, illetve zavarú fajok. A probléma egyik oka, hogy a vízfolyások csatorna jellege miatt a különböző, gyorsan átvezetődnek, csökken a vízkészlet, ill. az egykori bauxitbányászattal összefüggő talajvízszint csökkenés miatt a felszín alatti víztől függő láp- és
kiszáradó láprétek döntő többsége degradálódott. A károsodás oka arra is visszavezethető, hogy a szűk medrek (töltések, depóniák) miatt a vizek nem tudnak kiterülni az ártéren.

Az elmúlt évek csapadékhányaka következtében regionális léptékben csökkent a talajvízszint is. A károsodást előidéző okok közül a legfontosabbak a korábbi vízügyi beavatkozások: medrek lemélyítése, kiegyenesítése, lefolyástalan területek lecserépálása, ill. a túlzott felszíni és felszín alatti vízkivételek. Pl. az Ordacsehi-bereknél a terület szivattyúsítása értékes lápterülektől vonja el a vizet. A probléma kezelésére a múlt évben elkészült fenntartási terv javaslatot tesz.

Összességében megállapítható, hogy a részvígyűjtő területet az időjárás szárazodásán túl, a vízfolyások túlszabályozottságából adódó gyors vízelvezetés, a patakok és a környező területek kapcsolatának megszűnése és az ezzel együttjáró élőhely-szegényedés veszélyezteti. Ezt súlyosbíta a felszín alatti vizek mennyiségnének csökkenése, különösen a korábban magas talajvízállású, vizes területeken. Bár a Balatont érő szennyterhelések tovább csökkentek, a vízszelepályázás, valamint a természetes part és a nádasok továbbra is csekély aránya, kockázatot jelent a tó fenntarthatóságára.

Az egyes védett területtípusok illetve a víztesttípusok kölcsönös érintettségét a 6-24. és 6-25. táblázat mutatja be. Az ex lege lápok 4 tó és 53 vízfolyás vízgyűjtőjét érintik a részvígyűjtő 10 tó és a 82 vízfolyás vízgyűjtő víztestjéből. A nemzeti parki területeken elhelyezkedő ex lege területek, azok országos védett területeken történő elhelyezkedésük miatt nem kerültek beszámításra.

6-24. táblázat: Az egyes védett területtípusokkal érintett víztestek

<table>
<thead>
<tr>
<th>víztesttípus</th>
<th>az összes érintett VKI víztest</th>
<th>az egyes védett területtípusokkal érintett víztestek száma (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natura 2000</td>
<td>országosan védett természeti terület</td>
</tr>
<tr>
<td>vízfolyás</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>vízfolyás vízgyűjtő</td>
<td>41</td>
<td>38</td>
</tr>
<tr>
<td>állóvíz</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>állóvíz vízgyűjtő</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
6-25. táblázat: Az egyes víztesttípusokkal érintett védett területek

<table>
<thead>
<tr>
<th>a védett természeti terület típusa</th>
<th>az egyes víztesttípusokkal érintett védett területek száma (db)</th>
<th>vízfolyás</th>
<th>vízfolyás vízgyűjtő</th>
<th>állóvíz</th>
<th>állóvíz vízgyűjtő</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natura 2000 természetmegőrzési</td>
<td></td>
<td>25</td>
<td>31</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Natura 2000 madárvédelmi</td>
<td></td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>nemzeti park (NP)</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tájvédelmi körzet (TK)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>természetvédelmi terület (TT)</td>
<td></td>
<td>7</td>
<td>9</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ramsari</td>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

A víztől függő Natura 2000 területek friss ökológiai gyorsértékelésének eredménye alapján a Balaton részvízgyűjtőn fekvő 26 víztől függő N2000 terület közül:

- jelentősen károsodott: 13
- károsodott: 6
- kevésbé károsodott: 3
- nem, vagy alig károsodott: 4

6.3.5 A halak életfeltételeinek biztosítására kijelölt felszíni vizeink állapota

A halak élőhelye szempontjából védettnek kijelölt vizek (2.5 fejezet) minőségi követelményeit a 6/2002. (XI. 5.) KvVM rendelet rögzíti.

Az egyes komponensekre vonatkozó határértékek az élőhely típusától függően eltérőek (szigorúsási sorrendben: pisztrángos, márnás és dévéres vizek). A határértékeket a minták 95 %-a esetében teljesíteni kell.

A kijelölt, védelem alatt álló vizeink az első vízgyűjtő-gazdálkodási tervben rögzített helyzethez hasonló problémákat mutatnak, de több esetben javuló tendencia figyelhető meg. A minősítést a 6-26. táblázat összegzi, mely szerint:

- a Tapolca-patak vize továbbra is megfelelő.
6.4 A víztestek állapotával kapcsolatos jelentős problémák és okai

A Balaton és a Zala folyó kiemelt fontosságú, ezzel külön foglalkozunk.

A Zala vízgyűjtőjén a szabályozások gyorsították a lefolyást, sok lefüzött holtág keletkezett, melyek víztáplálása nem megoldott. A mellékágak csatornaszerű kiépítése szintén a terület lecsapolásával járt. A lecsapolt területeken főként szántóföldek keletkeztek. Ezekben a területeken meg kell határozni a jövőbeni területhasználatokhoz szükséges vízfolyás üzemeltetéseket.

A Zala alsó szakasz belvizes terület, mely szorosan összefügg a Kis-Balaton Vízvédelmi Rendszerrel. A belvízvédelmi létesítmények üzemeltetése vízminőségi és fenntartási vízgazdálkodási kérdéseket vetnek fel. A felső szakaszon pedig néhol a fenéklopácsok akadályozzák az átjárhatóságot, míg a mellékágakon létesült tavak szintén ilyen problémát vetnek fel. A részvízgyűjtő több területén (Zala dombvidéki vízgyűjtőjén, északi és déli part nagyobb részein) komoly vízgazdálkodási problémát okoz a nagyintenzitású esők következtében jelentkező helyi vízkárok és az erózió káros következményei elleni védelem. A szállított hordalékkal együtt ráadásul jelentős mennyiségű tápanyag is érkezik.

Az antropogén hatások leggyakoribb, a természetes ökoszisztémák átalakulásával járó következménye alkotott területen, a parti zonáció leromlása – gyakran eltűnése. Az egyre szaporodó mesterséges állóvizek alapvetően rossz irányba befolyásolják az öket tápláló természetes víztestek és a környező, felszín alatti vizek (magas talajvízszint) által befolyásolt területek ökológiai állapotát. Nem csak vízminőségi, hanem biológiai problémákat is gyakran okoznak (invazív fajok betelepülése). A megnövekedett párologtatási felület, illetve a vízvisszatartás és haszonelvű szabályozás okozta károk gyakran helyreállíthatatlan változásokat okoznak. Ez a probléma a kisvízfolyásokon kialakított „árvízi” tározókra is érvényes.

Az antropogén hatások leggyakoribb, a természetes ökoszisztémák átalakulásával járó következménye alkotott területen, a parti zonáció leromlása – gyakran eltűnése. Az egyre szaporodó mesterséges állóvizek alapvetően rossz irányba befolyásolják az öket tápláló természetes víztestek és a környező, felszín alatti vizek (magas talajvízszint) által befolyásolt területek ökológiai állapotát. Nem csak vízminőségi, hanem biológiai problémákat is gyakran okoznak (invazív fajok betelepülése). A megnövekedett párologtatási felület, illetve a vízvisszatartás és haszonelvű szabályozás okozta károk gyakran helyreállíthatatlan változásokat okoznak. Ez a probléma a kisvízfolyásokon kialakított „árvízi” tározókra is érvényes.

A Balaton északi vízgyűjtő nyílt karsztos területein vízminőség romlás (nitrátosodás) tapasztalható. A karsztvízszint regenerációjában érintett területen, az eredeti karsztvízszint alatt lévő szennyező források (volt bauxitbányák, illegális-legális hulladéklerakók) kimosódása, mobilizálódása veszélyt jelent. A sérülékeny ivóvízbázisok hidrogeológiai védőterületei még nincsenek teljes egészében kialakítva.
A részvízgyűjtő sekély hegyvidéki víztestjei felszínközeli elhelyezkedésükből adódóan a diffúz és pontszerű ipari, mezőgazdasági és települési szennyező hatásoknak vannak kitéve. Ezek a szennyező hatások a talajvízben már megjelentek, többnyire nitrát, ammónium-ion formájában. Okai a csatornázatlan településeken a szikkasztás, háztájú állattartásból származó trágya, a nem megfelelő mezőgazdasági gyakorlat a trágyázásban, műtrágyázásban, az állattartó telepekről származó hígtrágya, a trágya szakszerűtlen elhelyezése, valamint az ipartelepekről származó szennyezetés (leggyakoribbak a nitrát, szulfát, klorid, nehézfémek, különböző szénhidrogének). A már elszennyezett talajvíz minőségének javulása lassú folyamat, csak évtizedekkel a szennyező hatás megszűnte után várható a jó állapot. A talajvíz részvízgyűjtő területének egyes részein nitráttal, növényvédő szerrel (atrazin) szennyezett.

A részvízgyűjtőn van a magyarországi lápterületek és tőzegvagyon legjelentősebb része. A kiszáradó lápterületek tőzegvagyonra a szabad levegőn eloxidálódik, ezért fokozza a légkori szén-dioxid-koncentráció emelkedését, továbbá ex lege védett természeti érték károsodik, valamint értékes ásványi vagyon vész el hasznosítás nélkül. Stratégiai szempontból fontos a nemzetközi megőrzési és rekonstrukciós kutatásokhoz, vízgazdálkodási elvekhez és gyakorlathoz kapcsolódni.

A részvízgyűjtő területén jelenleg 2 kiváló, 22 jó, 34 mérsékelt, 10 gyenge és 6 rossz ökológiai állapotú vízfolyás víztestet tartunk nyilván. A rossz állapotúak közül 2 db csak természetes, a Gyöngyös-folyás és Csetényi-patak, illetve a Zala forrásvidék víztestek. Biológiai elemek alapján valamivel rosszabb a helyzet, a vízfolyások többsége inkább mérsékelt, vagy annál rosszabb állapotú (75%). Fizikai-kémiai elemek alapján ezzel szemben a legtöbb víztestünk legalább jó állapotú (80%)

Igazgatási, ugyanakkor jelentős problémáként lehet továbbá említeni a Balaton intézményi (közigazgatási) és jogszabályi hátterének osztottsága. Ez a tó és környezetének (vízgyűjtőjének) egyensúlyos és megfelelő kezelését, kezelését és kutatását jelentősen megnehezíti, mely probléma a társadalom részéről sok jelentős problémát okoz, és a részvízgyűjtő területen jelenlegi felülvizsgálatra kérjük a szereplők által felállított konzultációkat. A VKI szerint a vízgyűjtő-gazdálkodási tervezési folyamat lényeges eleme a jelentős vízgazdálkodási problémák feltárása abból a célból, hogy az intézkedések olyan válaszok legyenek a jelentős kérdésekre, amelyek a jó állapot eléréséhez, a problémák megoldásához vezetnek. DPSIR keretmodell segítségével meghatároztuk a terv 1 fejezetében a hajtóerőket: társadalmi, gazdasági és természeti igényekhöz vezetnek.

1. fejezetében a hajtóerőket: társadalmi, gazdasági és természeti igényekhöz vezetnek.
2. fejezetében a jelentős emberi terheléseket és hatásukat a vizekre, azaz a jelentős negativ hatás indikátoraikat.

Az alábbi táblázatban a jelentős vízgazdálkodási problémák felsoroljuk össze a 3. számú „Terhelések és Hatások” című útmutató43 szerinti pontos kidolgozásával. A teljes áttekintés érdekében minden (VKI értelmében) terhelés felsorolunk, azokat az is relevánsak a részvízgyűjtőn, ezért a jelentős problémákat külön megjelöljük.

6. fejezet

A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása

6-27. táblázat: Jelentős vízgazdálkodási problémák

<table>
<thead>
<tr>
<th>Hajtóerő és terhelés megnevezése</th>
<th>Víztest / védett terület típusa</th>
<th>A terhelés leírása</th>
<th>A hatás leírása</th>
<th>Terhelés jelentőségének értékelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Települési szennyvíz bevezetése felszíni vízbe</td>
<td>vízfolyás, állóvíz, fürdővíz</td>
<td>EU Települési Szennyvíz Irányelve szerinti és egyéb kommunális szennyvíz beleértve a köszöntetlenebb hálózatokat vezetett minden szennyvizes és tisztítás nélkül befogadó pomprésztere közbbsatott szennyvizes.</td>
<td>Eutrofizációt okozó szerves- és tápanyag szennyezés Kömial (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás) Savasodás, só- és hőszenyezés</td>
<td>Jelentős Zala és víztest szinten (pl.: Tapolca-patak, Nyugati-ovcsatorna)</td>
</tr>
<tr>
<td>1.2 Települési csapadékvíz egyesített rendszerű közcsatornás bevezetése felszíni vízbe</td>
<td>vízfolyás, állóvíz, fürdővíz</td>
<td>Egyesített rendszertől készült szennyvíztelepre érkező nagy mennyiségű csapadékvízzel kevert szennyvizes (balesszertés) bevezetése felszín belépést befogadó. (az elvalasztott rendszertől csapadékcsatorna külön ponton)</td>
<td>Eutrofizációt okozó szerves- és tápanyag szennyezés Kömial (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás) Savasodás, só- és hőszenyezés</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>1.3 Ipari Emissziós Irányelv alá tartozó üzemek szennyvízbevezetése felszíni vízbe</td>
<td>vízfolyás, állóvíz, védett terület</td>
<td>Ipari szennyvíz bevezetése E-PRTR méretű üzememből</td>
<td>Kömial (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Jelentős Zala, víztest szinten a Zala vízgyűjtőjén</td>
</tr>
<tr>
<td>1.4 Ipari Emissziós Irányelv alá nem tartozó üzemek szennyvízbevezetése felszíni vízbe</td>
<td>vízfolyás, állóvíz, védett terület</td>
<td>Egyéb ipari pontforrások nem E-PRTR szerinti üzememből</td>
<td>Kömial (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Jelentős víztest szinten (pl.: Kiskomáromi-ovcsatorna)</td>
</tr>
<tr>
<td>1.5 Multibeli szennyezések, szennyezett területek (ipari, felhagyott hulladéklerakók, honvédelmi területek, közlekedési létesítmények)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Ipari üzem vagy korábbi ipari tevékenység miatti szennyezés, települési és ipari hulladék elhelyezés vagy régi balesszertés szennyezés pomprésztere előfordulása</td>
<td>Kömial (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Jelentős Víztest szinten (sh.4.2., k.4.1., k.4.2.), elsősorban a Balaton-felvidéken</td>
</tr>
<tr>
<td>1.6 Működő hulladéklerakók (kommunális, ipari, bányászati)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Települési vagy ipari hulladéklerakók által okozott pontszerű szennyezések</td>
<td>Kömial (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Fontos Víztest szinten</td>
</tr>
<tr>
<td>Hajtóerő és terhelés megnevezése</td>
<td>Víztest / védett terület típusa</td>
<td>A terhelés leírása</td>
<td>A hatás leírása</td>
<td>Terhelés jelentőségének értékelése</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1.7 Bányavíz bevezetés felszíni vízbe</td>
<td>vízfolyás</td>
<td>Külszíni vagy felszín alatti bányászból származó pontforrások. A vízvívető bányászat folytatásához szükséges, vagy rekvitálószere, kármentesítési intézkedés.</td>
<td>Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>1.8 Halastó és horgásztó leeresztése felszíni vízbe</td>
<td>vízfolyás</td>
<td>Halastavak vagy horgásztavak leeresztésétől származó pontszerű bevezetés</td>
<td>Eutrofizációt okozó szerves- és tápanyag szennyezés</td>
<td>Jelentős Balaton, illetve víztest szinten, főként a Zala mellékvízfolyásain (pl.: Szévíz) és Balaton déli partján (pl.: Sári-csatoma, Pogányölgyi-vízfolyás)</td>
</tr>
<tr>
<td>1.9.1 Egyéb, Termálvíz bevezetés felszíni vízbe</td>
<td>Vízfolyás, védett terület</td>
<td>Használt termálvizek felszín alatti vízbe történő bevezetése.</td>
<td>Só- és hőszennyezés, esetenként kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Fontos Víztest szinten a Zala-vízgyűjtőn (pl.: Zalakaros)</td>
</tr>
<tr>
<td>1.9.2 Egyéb, Hűtővíz bevezetés felszíni vízbe</td>
<td>vízfolyás állóvíz</td>
<td>Hűtővizek vízfolyásokba vagy tavakba történő visszavezetésből adódó hőterhelés.</td>
<td></td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>1.9.3 Egyéb, Állattartótelepekől származó szennyezés</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Állattartótelepek szervestrágya és hígtragya tárolókból szennyezés</td>
<td>Eutrofizációt okozó szerves- és tápanyag szennyezés, Nitrátérzékeny területen a felszín alatti víz szennyezése</td>
<td>Jelentős Zala és vízgyűjtője, Balaton déli vízgyűjtő</td>
</tr>
<tr>
<td>1.9.4 Egyéb, Belvíz és/vagy városi csapadékvíz bevezetése felszíni vízbe</td>
<td>vízfolyás, állóvíz</td>
<td>Belvizek, mellőrült területek drénvizek vagy települési csapadékvizek pontszerű bevezetése felszínre befogadókba.</td>
<td>Eutrofizációt okozó szerves- és tápanyag szennyezés, Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Jelentős Balaton (partmenti települések, különösen Kesztthely), valamint Tapolcai-medence, Nagyberek és Kis-Balaton térsége</td>
</tr>
<tr>
<td>1.9.5 Egyéb, Szakszerűtlenül kiképzett kutak</td>
<td>felszín alatti víz</td>
<td>Szakszerűtlen kútkiképzésből származó közvetlen szennyezőanyag bevezetés felszín alatti vízbe.</td>
<td>a felszín alatti víz szennyezése</td>
<td>Jelentős országos probléma</td>
</tr>
</tbody>
</table>
2. Diffúz szennyezések

<table>
<thead>
<tr>
<th>Hajtóerő és terhelés megnevezése</th>
<th>Víztest / védett terület típusa</th>
<th>A terhelés leírása</th>
<th>A hatás leírása</th>
<th>Terhelés jelentőségének értékelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Települési csapadékvíz lefolyásból származó szennyezés (burkolt felületek, közlekedési területek, légköri kiülepedés)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Települési területen szennyeződött (só, elsőségesé veszélyes anyagok, tápanyag, szerves anyag) csapadékvíz lefolyás vagy beszivárgás.</td>
<td>Sőszennyezés Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás) Eutrofizáció okozó szerves- és tápanyag szennyezés</td>
<td>Jelentős Balaton, valamint egész részvízgyűjtőn víztest szinten is</td>
</tr>
<tr>
<td>2.2 Meshögazdasági területről (szántó, ültetvény, legelő)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Mezőgazdasági területekről származó erózió, szennyezett lefolyás vagy beszivárgás. Szennyezőanyagok: tápanyag, szerves anyag és növényvidéoszer.</td>
<td>Eutrofizáció okozó szerves- és tápanyag szennyezés Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Jelentős országos probléma</td>
</tr>
<tr>
<td>2.4 Közlekedési letesítményekből származó kibocsátások</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Diffúz szennyezés közül, vasúti és légköri közlekedésből, illetve azok infrastruktúrájából.</td>
<td>Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>2.5 Multibeli szennyezett területek (nagy kiterjedésű ipar, bányászati, közlekedési terület)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Felhagyott ipari üzem vagy korábbi ipar, bányászati tevékenység miatt szennyezés, ipari és bányászati hulladék elhelyezés vagy régi baleseti szennyezés maradványa. Diffúz jellegű előfordulás.</td>
<td>Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás)</td>
<td>Fontos Víztest szinten (sh. 4.2., k.4.1., k.4.2.), elsősorban a Balaton-felvidéken</td>
</tr>
<tr>
<td>2.6 Csatornahálózattal nem összegyűjtött szennyezett kibocsátás (csatornahálózat területek)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Csatornára nem költött lakossági települési szennyezéstől eredő szennyezése, amely diffúznak tekintett.</td>
<td>Eutrofizáció okozó szerves- és tápanyag szennyezés Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás) a felszín alatti víz szennyezése</td>
<td>Fontos Balaton déli vízgyűjtőjén (beruházások már folyamatban)</td>
</tr>
<tr>
<td>2.7 Légköri kiülepedés</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Diffúz szennyezés bármilyen eredetű légköri kiülepedésből.</td>
<td>Eutrofizáció okozó szerves- és tápanyag szennyezés Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás) a felszín alatti víz szennyezése</td>
<td>Fontos Balaton déli vízgyűjtőjén (beruházások már folyamatban)</td>
</tr>
<tr>
<td>2.8 Bányászati tevékenység kibocsátásai</td>
<td>vízfolyás, felszín alatti víz</td>
<td>Diffúznak tekintett, bányászati tevékenységből eredő szennyezés (pl. bányaterületen történt lefolyás vagy bányával érintkező felszín alatti víz).</td>
<td>Kémiai (veszélyes anyag) szennyezés, amely az emberi egészségre és az élővilágra káros (elpusztulás, elváltozás) a felszín alatti víz szennyezése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>2.9 Halászati, horgászati tevékenység kibocsátásai</td>
<td>vízfolyás, állóvíz</td>
<td>Felszíni víztestet – vagy annak részét – képező halastavak vagy horgástavak halgazdálkodásából, horgástavából származó belső terhelése, amely meghatározza a víztest állapotát/potenciálját</td>
<td>Eutrofizáció okozó szerves- és tápanyag szennyezés</td>
<td>Fontos Balaton, illetve víztest szinten, főként a Zala mellékvízfolyásai és Balaton déli partján (pl.: Sári-csatorna, Pogányvölgyi-vízfolyás)</td>
</tr>
<tr>
<td>3. Vízkivételek és átvezetések</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Mezőgazdasági célú vízkivételek és átvezetések</td>
<td>vízfolyás, állóvíz, felszín alatti víz, védett terület</td>
<td>Mezőgazdasági célú vízkivételek vagy átvezetések (mesterséges vízzellátó hálózat): öntözésre, illetve állattenyésztéshez.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td></td>
</tr>
<tr>
<td>3.2 Közüzemi vízellátás céljára vízkivételek és átvezetések</td>
<td>vízfolyás, állóvíz, felszín alatti víz, védett terület</td>
<td>Ivóvízellátási célú vízkivételek vagy átvezetések.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td></td>
</tr>
<tr>
<td>3.3 Ipari célra vízkivételek és átvezetések</td>
<td>vízfolyás, állóvíz, felszín alatti víz, védett terület</td>
<td>Ipari célú vízkivételek vagy átvezetések, kivétel hűtővíz</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td></td>
</tr>
<tr>
<td>3.4 Hűtővíz célra vízkivételek és átvezetések</td>
<td>vízfolyás</td>
<td>Vízkivétel vagy átvezetés hűtővíz célra.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td></td>
</tr>
<tr>
<td>3.5 Halgazdaság és rekreáció (horgászat) számára felszíni vízkivételek és átvezetések</td>
<td>vízfolyás</td>
<td>Vízkivétel vagy átvezetés oldaltározóként működő halastavak illetve rekreációs (horgász) tavak számára.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td></td>
</tr>
<tr>
<td>3.6 Energetika célra vízkivételek és átvezetések</td>
<td>vízfolyás</td>
<td>Vízkivétel vagy átvezetés energiatermelés miatt</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td></td>
</tr>
<tr>
<td>Hajtóerő és terhelés megnevezése</td>
<td>Víztest / védett terület típusa</td>
<td>A terhelés leírása</td>
<td>A hatás leírása</td>
<td>Terhelés jelentőségének értékelése</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>3.7 Egyéb, Termálvíz hasznosítása energetikai célból</td>
<td>felszín alatti víz</td>
<td>Termálvizek fütesi célú hasznosítása visszatáplálás nélkül</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése Felszín alatti víz szintjének csökkenése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>3.8 Egyéb, Termálvíz hasznosítása rekreációs célból</td>
<td>felszín alatti víz</td>
<td>Termálvizek fűrdési, gyógyászati célú hasznosítása.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése Felszín alatti víz szintjének csökkenése</td>
<td>Jelentős Nyugat-dunántúli termálkarszt (megj.: készletek jelenleg rendben, de korlátozottak)</td>
</tr>
<tr>
<td>4.1 Morfológiai módosítás: vonalvezetés, mederforma, parti sáv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1 Árvízvédelem miatt morfológiai beavatkozás</td>
<td>vízfolyás</td>
<td>Vízfolyások hosszirányú és keresztrányú szabályozása, (meredátvágás, töltés, módosított mederforma és növényzónák, árvedelmi töltekkel szükitett árter).</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Jelentős Zala, és víztest szinten a teljes részvízgyűjtőn</td>
</tr>
<tr>
<td>4.1.2 Mezőgazdasági cél alatt morfológiai beavatkozás</td>
<td>vízfolyás</td>
<td>Vízfolyások hosszirányú szabályozása, trapézformájú meder, medermélyítés drénezési céljára, átalakított növényzónák, mesterséges medrek kialakítása</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Jelentős Balaton északi part</td>
</tr>
<tr>
<td>4.1.3 Hajózás miatt morfológiai beavatkozás</td>
<td>vízfolyás</td>
<td>Vízfolyások kis és középvízi szabályozása, kotrás, kikötők.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.1.4 Egyéb, Beltéri lélegzés szakaszon morfológiai beavatkozás</td>
<td>vízfolyás, állóvíz</td>
<td>Beltéri lélegzés és tópartok átalakítása közlekedési, rekreációs és kiemelt árvízfolyási céljára. Mesterséges medrek kialakítása.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Jelentős Balaton, Zala</td>
</tr>
<tr>
<td>4.1.5 Egyéb, Rekreációs cél alatt morfológiai beavatkozás</td>
<td>vízfolyás, állóvíz</td>
<td>Vízfolyások, tavak partjának és a parti növényzónának a módosítása (pl. strand kialakítása, horgászat) kotrás.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Jelentős Balaton, Zala, víztest szinten több vízfolyás</td>
</tr>
<tr>
<td>4.2 Morfológiai módosítás: gátak, fenékkészökök, zsíripek, elzárások</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1 Energiatermelés miatt</td>
<td>vízfolyás</td>
<td>Mederelcárzás tározás és vízszintemelés céljából.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése hallépcső nélkül hosszirányú átjavarósítás nem biztosított</td>
<td>Nem jelentős</td>
</tr>
</tbody>
</table>
Hajtóerő és terhelés megnevezése

<table>
<thead>
<tr>
<th>Hajtóerő és terhelés megnevezése</th>
<th>Víztest / védett terület típusa</th>
<th>A terhelés leírása</th>
<th>A hatás leírása</th>
<th>Terhelés jelentőségének értékelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2 Árvízvédelmi céllal</td>
<td>vízfolyás</td>
<td>Tározás árvízcsúcs csökkentési céljából.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Fontos elsősorban a Zala dombvidéki vízgyűjtőjén</td>
</tr>
<tr>
<td>4.2.3 Ivóvízellátási céllal</td>
<td>vízfolyás</td>
<td>Ivóvíztározók kialakítása.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.2.4 Mezőgazdasági céllal</td>
<td>vízfolyás</td>
<td>Mederelzárás tározás vagy vízszint emelés vízkivezetés céljából.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.2.5 Rekreációs céllal</td>
<td>vízfolyás állóvíz</td>
<td>Mederelzárás tározási céllal, duzzasztás vízszintemelési vagy vízkivezetési céljából.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.2.6 Ipari céllal</td>
<td>vízfolyás</td>
<td>Mederelzárás tározási vagy vízszintemelési céljából közvetlen vízkivétel vagy vízkivezetés céljából.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.2.7 Hajózás céljára</td>
<td>vízfolyás</td>
<td>Duzzasztás vízmélység növelő céljából.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.2.8 Egyéb, Halgazdálkodás céljára</td>
<td>vízfolyás, állóvíz</td>
<td>Mederelzárás tározási vagy duzzasztás céljából, esetleg vízszintemelés vízkivezetés céljából.</td>
<td>Morfológiai változások miatt megváltozott élőhelyek, víztől függő élettér változatosságának csökkenése</td>
<td>Jelentős Balaton, illetve víztest szinten, főként a Zala mellékvízfolyásain és Balaton déli partján (pl.: Sári-csatorna, Pogányvölgyi-vízfolyás)</td>
</tr>
</tbody>
</table>

4.3 Vízjárás módosítása

| 4.3.1 Mezőgazdaság miatt | vízfolyás, felszín alatti víz | Természetesnél nagyobb vízhozamok öntözési vagy belvíz elvezetési céljával (esetenként, nem megfelelő területi vízgazdálkodásból adódóan: vízvisszatartás hiánya). | Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése Felszín alatti víz szintjének csökkenése | Jelentős Balaton déli part (Nagyberek), Zala alsó |
Vízgyűjtő-gazdálkodási Terv - 2015
Balaton részvízgyűjtő

<table>
<thead>
<tr>
<th>Hajtóerős és terhelés megnevezése</th>
<th>Víztest / védett terület típusa</th>
<th>A terhelés leírása</th>
<th>A hatás leírása</th>
<th>Terhelés jelentőségének értékelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2 Hajózás miatt</td>
<td>vízfolyás</td>
<td>Vízmegosztás hajózó csatornák kialakítása miatt.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.3.3 Vízenergia-termelés miatt</td>
<td>vízfolyás</td>
<td>Csúcsra járatás miatt változó alvázi vízjárás, vízmegosztás az üzemű csatorna és a főmeder között.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.3.4 Közüzemi vízellátás miatt</td>
<td>vízfolyás</td>
<td>Tározók alvázi leeresztése jelentősen eltér a természettestől.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.3.5 Halgazdálkodás miatt</td>
<td>vízfolyás</td>
<td>Tározók alvázi leeresztés jelentősen eltér a természettestől.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Jelentős Balaton, illetve víztest szinten, főként a Zala mellékvízfolyásain és Balaton déli partján</td>
</tr>
<tr>
<td>4.3.6 Egyéb, Természetvédelem miatt</td>
<td>vízfolyás</td>
<td>Ökológiai, természetvédelmi célú vízpótlás átvezetése miatt a természettestől eltérő vízjárás</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.3.7 Egyéb, Szennyvíz-bevezetés miatt</td>
<td>vízfolyás</td>
<td>Szennyvízbevezetések miatt a természettestől jelentően eltérő kisvízi hozamok</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Fontos Zala, illetve víztest szinten elsősorban a regionális rendszerek miatt a teljes részvízgyűjtőn</td>
</tr>
<tr>
<td>4.3.8 Egyéb, Helytelen vízmegosztás árapasztó csatorna és főmeder között</td>
<td>vízfolyás</td>
<td>Árapasztó csatornák esetén nem megfelelő vízmegosztás, az ökológiai kisvízi nincs biztosítva.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Nem jelentős</td>
</tr>
<tr>
<td>4.4. Felszíni vizek és vizes élőhelyek lecsapolása, kiszáradás</td>
<td>vízfolyás, állóvíz, védett terület</td>
<td>Kiszáradt medrek, vizes élőhelyek - aszály, lecsapolás, elterelés vagy gyors vízelvezetés miatt</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése</td>
<td>Jelentős Zala, valamint Balaton északi (Tapolcai-medence) és déli part (Nagyberek)</td>
</tr>
</tbody>
</table>

6. fejezet A vizek állapotának értékelése, jelentős vízgazdálkodási kérdések azonosítása – 166 –
Egyéb terhelések

<table>
<thead>
<tr>
<th>Hajtóerő és terhelés megnevezése</th>
<th>Víztest / védett terület típusa</th>
<th>A terhelés leírása</th>
<th>A hatás leírása</th>
<th>Terhelés jelentőségének értékelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Felszíni vízbe juttatott idegen fajok vagy kórokozók</td>
<td>vízfolyás, állóvíz</td>
<td>Idegenhonos öönfajok kiszoríthatják a természetes fajokat az élőhellyről. Tudatos betelepítés, véletlen behurcolás, éghajlatváltozás miatti invázió. Kórokozók bejutása és terjedése</td>
<td>Megváltozott ökoszisztéma</td>
<td>Jelentős Zala, Balaton és víztest szinten</td>
</tr>
<tr>
<td>5.2 Állatok/növények tenyésztése/termelése és kivétel</td>
<td>vízfolyás, állóvíz</td>
<td>Kereskedelmi halászat vagy rekreációs/aportthorgászat, kereskedelmi növény-, vagy alga kitermelés a víztestekből. Például nádgazdálkodás, halgazdálkodás természetes vízében.</td>
<td>Megváltozott ökoszisztéma</td>
<td>Fontos víztest szinten jelentős hatás</td>
</tr>
<tr>
<td>5.3 Szemetelés, illegális hulladéklerakás</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Illegális hulladéklerakókból származó bemosódás, közleti szemetelés, hajózásból eredő szemet. Árviz idején megnövekvő üszőszemét, árvíz után ártéri lerakódás.</td>
<td>Üszőszemét (ahogy azt a Tengervédelmi Irányelv meghatározza), megváltozott élőhely Felszín alatti víz szennyezése</td>
<td>Fontos víztest szinten több helyen, különösen kockázatos karsztos felszín alatti víztesteknél (Balaton-felvidék)</td>
</tr>
<tr>
<td>5.4 Vegyületkezelés</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Talajvízdíszítés, szénhidrogén termelő kultúrákból a kivett folyadék, illetve használt termálvíz visszasajtolása nem megfelelő szintbe</td>
<td>Felszín alatti víz szennyezése</td>
<td>Fontos Zala vízgyűjtőjén</td>
</tr>
<tr>
<td>6.1 Felszín alatti vízekbe mesterséges beszivárogtatás, visszasajtolás</td>
<td>felszín alatti víz, ivóvízbázis</td>
<td>Talajvízdíszítés, szénhidrogén termelő kultúrákból a kivett folyadék, illetve használt termálvíz visszasajtolása nem megfelelő szintbe</td>
<td>Felszín alatti víz szennyezése</td>
<td>Fontos Zala vízgyűjtőjén</td>
</tr>
<tr>
<td>6.2 Felszín alatti víz jelentős süllyedése nem vízgyűjtők kielégítése miatt</td>
<td>felszín alatti víz, védett terület</td>
<td>Ideiglenes süllyeszése a felszín alatti víz szintjének tipikusan bányászat vagy munkagődő építkezésnél. Közvetett vízkivétel a természetesnél nagyobb vízelvonást mély csatornák, kavicsbánya tavak, elterelt folyók miatt.</td>
<td>Hidrológiai változások miatt megváltozott élőhelyek, víztől függő élettér csökkenése, vagy eltűnése Felszín alatti víz szintjének csökkenése</td>
<td>Jelentős Dunántúli-középhegység karsztos víztestekon, kihatással a részvízgyűjtő karsztos víztestekre (megj.: jelenleg a karsztos víztestek regenerálódnak/regenerálódtak)</td>
</tr>
<tr>
<td>7. Balesetekből származó szennyezések</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Balesetek bekövetkezésének potenciális veszélye és a baleset által okozott szennyezés, határon átterjedő szennyezés is lehet</td>
<td>Felszín és felszín alatti víz szennyezése</td>
<td>Fontos víztest szinten jelentős hatás</td>
</tr>
<tr>
<td>8. Ismeretlen eredetű hazai vagy külföldi terhelések</td>
<td>vízfolyás, állóvíz, felszín alatti víz, védett terület</td>
<td>A terhelés nem ismert, illetve valószínűsíthető a külföldi eredet</td>
<td>Víztest állapota nem jó</td>
<td>Nem jelentős</td>
</tr>
</tbody>
</table>
Vízgyűjtő-gazdálkodási Terv · 2015
Balaton részvízgyűjtő

A táblázatban megadott problémákon túl még néhány átfogó jellegű jelentős problémával kell megküzdenünk:

- a hatékony vízhasználatra ösztönző gazdasági szabályozási eszközök hiányosságai,
- a mindenre kiterjedő monitoring mérések hiányosságai,
- az informatikai rendszerek és nyilvántartások hiányosságai, továbbá a társadalom környezeti információhoz való teljes körű hozzáférésének hiányosságai,
- szabályozási környezet problémái (rugalmatlan, költséges, bonyolult, változékony),
- a vízügyi, környezetvédelmi, természetvédelmi hatóságok és igazgatási szervek erőforrásbeli és működési hiányosságai,
- kutatás, fejlesztés és a szakemberképzés hiányosságai,
- éghajlatváltozás kihívásai.

Az átfogó problémák megoldása a legfontosabb, mivel azok hatása horizontális, mindegyik víztest kategória állapotára jóttékonyan hat.

6.5 A problémák és okaik a kiemelt vizek tekintetében

A részvízgyűjtő tervekben azokat a víztesteket (víztest-csoportok) javasolták kiemeltnek, amelyeket az ICPDR-ral történő egyeztetések során annak nyilvánítottak:

- vízfolyások: a Duna és a Dráva vízgyűjtőjén a 4000 km2-nél nagyobb, a Tisza vízgyűjtőjén pedig az 1000 km2-nél nagyobb vízgyűjtővel rendelkező folyók;
- állóvizek: 1000 ha-nál nagyobb felületű természetes állóvizek;
- felszín alatti vizek: 4000 km2-nél nagyobb felszíni vetülettel rendelkező víztest-csoportok, illetve kétségkívül megegyezés alapján jelentősnek tartott víztest-csoportok, valamint a Tisza vízgyűjtőn a 1000 km2-nél nagyobb területű víztestek, és a határokkal osztott víztestek (kidővé a termál víztesteket).

A fentiek azonban olyan nagyszámú víztestet, illetve olyan jelentőségű vizeket soroltak volna ide, hogy lényegében vizeink nagyobb része vált volna kiemelt, ami a kiemelt kezelés szempontjából használhatatlanná tenné a kategóriát. Ennek megfelelően szűkítettük a kiemeltet.

Azokat a vízfolyásokat, amelyek csak egyetlen alegységi tervhez tartoznak, az alegységi tervben kell tárgyálni, és ott kell említeni, hogy a kiemeltek közé tartozik. Az állóvizek mindegyik egyetlen alegységhez tartozik, ennek ellenére ezeket külön kiemeljük a részvízgyűjtő tervekben. A felszín alatti vizek esetében a fontosság és a problémák jelentősége alapján is szelektálva soroltuk ide a vizeket.

Fontos megjegyezni, hogy a kiemeltség nem elsősorban prioritási tényező jelent. Inkább az érintett területek nagysága, a problémák összefüggő mivolta, a megoldások közös jellemzői miatt együtt kezelés igényét jelenti.

A Balaton részvízgyűjtő esetében kiemeltek tekintjük: a Balatont és a Zala folyót.
6.5.1 Balaton

A kiemelt jelentőségű Balaton – mint VKI szerinti állóvíztest – a VKI minősítés alapján minden összesített szempont szerint legalább jó állapotú.

A Balaton vízkészlet-gazdálkodásának alapvető célkitűzése, hogy az ökológiai kritériumok szem előtt tartásával az üdülésnek megfelelő vízszint (fürdőzésre, vízi sportolásra alkalmas állapot) és a kommunális vízigény kielégítése biztosítva legyen. A vízszintszabályozás lényege, hogy a tó leeresztését olyan mértékben szabályozzuk, hogy a tóban az ökológiai szempontoknak és az emberi igényeknek megfelelő (pl. fürdőzés, hajózás stb.) vízszintet tartsunk.

Vízmennyiség problémái:

A Balaton tekintetében a társadalmi és ökológiai érdekek látszólag ellentétesek. Például a tartósan magas vízszint a nádasok fejlődését károsan befolyásolja, szaporodását gátolja, viszont az üdülés és jóléti vízhasználat az állandó magas vízszintet igényelne. A tó vízszintjét azonban alapvetően a mindenkori hidrometeorológiai feltételek alakítják. A Balaton tervezett újabb jelentős vízszintemelése (120+5% cm) fokozott árvízi kockázatnövekedést jelent, mely magával hozza a Sió-MÁSZ emelésének kérdését. A tervezett vízszintemelés hatása miatt a teljes balatoni infrastruktúrát – partvédműveket és csapadékvíz elvezető hálózatot, valamint a befolyó vízfolyások rendszerét is felül kell vizsgálni, szükség esetén átalakítani, a hatásokat minden téren monitorozni kell. A Sió csatorna és leeresztő zsílip vízszállító képességének megfelelő szintű kiépítése is elengedhetetlen. A vízszintszabályozás műszaki feltételei (Siófoki leeresztő és hajó zsílip, Sió csatorna) – a rekonstrukciós munkák és a fenntartás részleges elmaradása miatt – jelenleg nem biztosítottak.

Partvonal problémái:

A parti régió természeti állapota a fokozott antropogén hatások miatt leromlott. A partvonal rehabilitáció végrehajtásának elmaradása a kedvezőtlen áramlási viszonyok kialakulásával és a szemétzugok fennmaradásával éretetlen hatását pl. a nádasok állapotának romlásával. A kikötőfejlődés veszélyezteti, pusztíthatja a parti, partközeli élővilágot, amennyiben ez közvetlenül a nádasövet érinti.

Vízminőség problémái:

A Balaton vize jellemzően (Ca,Mg)HCO₃-os kemény víz, pH-ja enyhén lúgos. Természetes sótartalma 450 mg/l körül van, keménysége 15-16 nk° körül ingadozik. Így kémiai tulajdonsága is kellemes fürdővízzé teszi. Kalcium-magnézium hidrogén-karbonátos jellege miatt az alga növekedésével járó szén-dioxid-elvonás következtében a biogén mészkiválás folyamatos. Ezért, és amiatt, hogy vízfelületéhez képest igen sekély, a legkisebb szél hatására is felkeveredik az üledék,
aminek következtében a víz állandóan zavarosnak tűnik, átlátszósága ritkán haladja meg az egy métert.

A Balaton vízminősége kiemelt jelentőségű. Bár a tó állapota a 80-as években jellemző vízminőséghoz képest igen sokat javult, tápanyagterhelését tovább kell csökkenteni (első sorban a Keszthelyi- és Szigligeti-medencében), hogy a kedvezőtlen vízminőségű időszakokat (időszakosan és lokálisan jelentkező vízvirágzás/alga tömegprodukció) el lehessen kerülni.

A Balaton vízminőségét befolyásoló tényezők közül különös szerepet játszanak a mikrobiológiai jellemzők, a klorofill tartalom alakulása és az azt befolyásoló nitrogén és foszforháztartás jellemzői. A Balaton nyiltvízének minőségét alapvetően az algák szervesanyag-termelése és a vízgyűjtőről származó oldott szerves (humin) anyagok határozzák meg. Jelenleg a Balatont éró tápanyagterhelés legnagyobb része a Zalán, jelentős része a kisvízfolyásokon keresztül történő tisztított szennyvíz-bevezetésekből és a közvetlen lefolyásból éri a tavat. A Zala vízgyűjtőről érkező pontszerű és diffúz eredetű tápanyagterhelés jelentős szerepet játszott és részben még ma is a Balaton, illetve különösen a Keszthelyi-öblök vízminőségének alakulásában. A terhelés visszatartása a Zala-torkolat előtt kialakított Kis-Balaton Vízvédelmi Rendszer feladata, ennek hatékonyságáról azonban még nincsenek pontos adatok. A kisvízfolyásokból származó kisvízterheléseket csökkentése a torkolati szűrőmezők megfelelő karbantartásával megoldható lenne.

Kis-Balaton

Fontos kiemelni a területen található számos mesterséges, vagy erősen módosított állapotú csatornát, melyek a Kis-Balaton környékén rendszerint a belvízelvezetést szolgálják. Általános, országos probléma a jelenlegi belvízrendszerek nem megfelelő vízvisszatartása és a befogadók előtti szűrőmezők hiánya. A Kis-Balaton tározóinak és így közvetve a Balaton vízének minőségére való tekintettel foglalkozni kell a kérdéskörrel, hiszen az egykori vízcs csőhelyek szárazodása komoly ökológiai problémákat vet fel (pl. lábas égeres begyomosodása).

6.5.2 Zala

A Zala folyót a XIX. és a XX. században szinte teljes hosszában szabályozták. E munkák során a kanyarokat majdnem mindenhol levágták, a folyót kiegynézetették, a korábbi vízimalmokat megszüntették. A malmok elbontásával azok duzzasztása is megszűnt, az így megnövekedett esés következtében a víz sebessége egyes szakaszokon oly mértékben megnőtt, hogy az káros kimosásokat okozott. E károk megszüntetésére több helyen vált szükségessé eséscsökkentő fenéklépcső megépítése.
A Zala folyó középső és alsó szakaszának vízminősége rossz, mert a vízhozamához képest nagy terhelést jelentenek Zalaegerszeg térségének szennyvizei, különös tekintettel a kibocsátott foszfor mennyiségére, mely végső soron a Kis-Balatont, ill. a Balatont terheli. További probléma, hogy a Zala-felső vízgyűjtőjén a kistelepülések szennyvíztisztítóinak üzemeltetési problémái miatt a Zala kis vízhozamát időnként viszonylag nagy terhelés éri, melynek következtében előfordulnak halpusztulások. A Kis-Balaton térségében lévő Egyesített övcsatornában többször előfordul halpusztulás, melynek főbb oka a Keszthely Városi Szennyvíztisztító Telepről származó szennyvíz és a Fenékpusztai belvízvédelmi szivattyúk által átemelt rossz minőségű víz. A jó ökológiai állapot elérését csak 2027-re tervezték.

Környezeti célkitűzések

A Víz Keretiirányelv a felszíni vizekre a következő környezeti célkitűzések elérését tűzi ki:

- a víztestek állapotomlásának megakadályozása;
- a természetes állapotú felszíni víztestek esetén a jó ökológiai és jó kémiai állapot megőrzése vagy elérése (vagy a kiváló állapot megőrzése);
- az erősen módositott vagy mesterséges felszíni víztestek esetén a jó ökológiai potenciál (a hatékony javító intézkedések eredményeként elérhető állapot) és jó kémiai állapot elérése;
- az elsőbbségi anyagok által okozott szennyeződéseket fokozatos csökkentése és a kiemelten veszélyes anyagok bevezetéseinek, kibocsátásainak és veszteségeinek megszüntetése vagy fokozatos kiiktatása.

A felszín alatti vizekre a VKI-ban előírt célok kiegészülnek a felszín alatti vizek védelmére vonatkozó 2006/118/EK irányelvben foglaltakkal:

- a felszín alatti vizek szennyeződésének korlátozása, illetve megakadályozása;
- a víztestek állapotomlásának megakadályozása;
- a víztestek jó mennyiségi és jó kémiai állapotának elérése;
- a szennyezettség fokozatos csökkentése, a szennyezettségi koncentráció bármely szignifikáns és tartós emelkedő tendenciájának megfordítása.

Mindezekben túlmenően a vizek állapotától függő, az egyes víztestekhez közvetlenül, vagy csak közvetetten kapcsolódó védett területeken (lásd 2. fejezet) teljesíteni kell a védettté nyilvánításukhoz kapcsolódó speciális követelményekkel összefüggő célkitűzések eléréséhez szükséges intézkedéseket, a vizeket, illetve a vízgyűjtőket érintően.

Az erősen módosított állapotú víztestek kijelölésére vonatkozóan a VKI előírja - VKI 4. cikk (3) bekezdés -, hogy igazolni kell, hogy a víztest mesterséges vagy megváltoztatott jellemzői által szolgált, hasznos célkitűzések a műszaki megvalósíthatóság vagy az aránytalan költségek miatt nem érhetők el olyan más ésszerű módon, amely környezeti szempontból jelentős mértékben jobb megoldás lenne.

A VKI alapkövetelménye szerint a megállapított célokat 2015-ig el kell érni. A környezeti célkitűzés csak akkor érhető el, ha valamennyi intézkedés megvalósul és hatásuk meg is jelenik a vizek állapotában. Ez a gyakorlatban jellemzően így nem valósítható meg. Lehetnek olyan víztestek, ahol a jó állapot/potenciál csak a következő kétszer 6-éves tervciklusban érhető majd el (2021-es vagy 2027-es határidővel), illetve lehetnejek sajátos víztestek is, amelyek természetes állapota olyan, hogy hosszútávon is csak enyhébb környezeti célkitűzés érhető el. Emiatt a VKI lehetővé teszi mentességek alkalmazását megfelelő és alapos indoklás alapján.

7.1 Mentességi vizsgálatok

A mentességi vizsgálatok célja azoknak az indokoknak a bemutatása, amelyek a VKI által megfogalmazott célkitűzések elérését megakadályozzák. Nagyon lényeges, hogy minden egyes mentességi indok, amire a VKI lehetőséget ad minden egyes víztesten külön-külön megjelenjen a

44 2006/118/EK Irányelv a felszín alatti vizek szennyezés és állapotomlás elleni védelméről (2006. december 12.)
VGT-ben. A mentességeket a célok szerint is külön-külön kell megállapítani, a felszíni vizeknél külön kell vizsgálni az ökológia célkitűzéseket és a kémia célkitűzésekre és a felszín alatti vizek esetében a mennyiségi és kémiai célkitűzésekre.

A mentességek lehetőségei:

- időbeni mentesség (VKI 4. cikk (4) bekezdés), három féle okból adható. A célkitűzések teljesítése műszaki megvalósíthatósági (M), vagy aránytalan költségesség (G) vagy a természet viszonyok miatt meghatározott határidőre nem érhető el (T), ezért annak határidejét 2021-re, vagy 2027-re lehet módosítani. (A 2027 utáni teljesítés abban az esetben fogadható el, ha minden intézkedés megtörtént 2027-ig, de ezek hatása még nem érvényesül).

- a természetes vizek esetében enyhébb környezeti célkitűzések megállapítása (VKI 4. cikk (5) bekezdés) indoka az, hogy a víztestet érintő emberi tevékenység által kielégített környezeti és társadalmi-gazdasági igények nem valósíthatók meg olyan módszerekkel, amelyek környezeti szempontból jelentősen jobb megoldások, és amelyeknek nem aránytalanul magasak a költségei. Ebben az esetben azt is igazolni kell, hogy az összes olyan intézkedés megtörtént, amely a hatásokat csökkenti.

- időbeni mentességet vagy enyhébb célkitűzést egyaránt indokolhat kivételes vagy ésszerűen előre nem látható természetes ok, vagy vis major, illetve a felszíni víztest fizikai jellemzőiben, vagy egy felszín alatti víztest vízszintjében bekövetkezett új változások, illetve új emberi tevékenységek hatása (VKI 4. cikk (6) bekezdés).

- egy felszíni víztest fizikai jellemzőiben vagy egy felszín alatti víztest vízszintjében bekövetkezett új változások (hidromorfológiai beavatkozások) és egyéb fenntartható fejlesztések esetén a VKI 4. cikk (7) szerinti mentesség adható, ha a vizsgálat eredménye ezt igazolja.

A VKI 4.4 és 4.5 mentességi vizsgálatok módszerét az EU mentességekkel foglalkozó útmutató alapján a VGT1 tervezése során dolgozták ki a hazai sajátosságok figyelembevételével, amit a az OVGT2 7-1 háttéranyag mutat be. A VKI 4.7. cikkely szerinti vizsgálat ma már kötelező eleme a (stratégiai) környezeti vizsgálatoknak, a környezeti hatásvizsgálatnak, az engedélyezési eljárásoknak. E nagyon fontos, de bonyolult vizsgálat jó gyakorlata még nem alakult ki, ezért később útmutató a VKI 4.7 cikkely szerinti elemzés elvégzéséhez, amelynek még nem végleges változatát az OVGT2 7-1 melléklet tartalmazza.

A víztestenkénti mentességi indokokat a 7-1. melléklet tartalmazza.

A különböző mentességi indokok előfordulását foglalja össze felszíni vizek vonatkozásában a 7-1. táblázat. A táblázat mutatja, hogy még mindig jelentős az adathány, ismerethány miatti mentesség. Egyedül a vízfolyások ökológiajával kapcsolatban került túlsúlyba a gazdasági indok.
7-1. táblázat: A mentességi vizsgálatok eredményei felszíni vizekre (az ok előfordulása a mentességet igénylő víztestek %-ában)

<table>
<thead>
<tr>
<th>Mentességi okok</th>
<th>Vízfolyások, okoló gia %</th>
<th>Vízfolyások, kémia %</th>
<th>Állóvíz, okoló gia %</th>
<th>Állóvíz, kémia %</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1: Jelenleg nem ismert meg bizthatóan a víztest állapota, illetve a kedvezőtlen állapot oka</td>
<td>25,68%</td>
<td>97,83%</td>
<td>87,50%</td>
<td>100,00%</td>
</tr>
<tr>
<td>M2: A jó állapot eléréséhez a szomszédos országgal összehangolt intézkedésekre is szükség van</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
</tr>
<tr>
<td>G2: Az intézkedések 2015-ig történő megvalósítása aránytalanul magas terheket jelent a nemzet-gazdaság, a társadalom bizonyos szereplői, vagy egyes gazdasági ágazatok számára</td>
<td>59,46%</td>
<td>2,17%</td>
<td>12,50%</td>
<td>0,00%</td>
</tr>
<tr>
<td>T1:Ökológiai állapot helyreállása hosszabb időt vesz igénybe.</td>
<td>14,86%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

A felszín alatti vizeknél legtöbbször a természeti okok alapján igazolható mentesség. A Balaton részvízgyűjtőn lévő, vagy érintő 17 felszín alatti víztestből csak egy van, ami jelenleg nem jó mennyiségi állapotú, ott időben a mentességi indok. Kémiai állapot vonatkozásában a 7 nem jó állapotú víztest mindegyikénél a T2 időbeni mentesség alkalmazható: a felszín alatti víz állapot helyreállásának ideje hosszabb időt vesz igénybe.

7.2 Döntési prioritások

Kiindulási alap azoknak az intézkedéseknek a listája, amelyek szükségesek a jó állapot (mesterséges és érősen módosított víztestek esetén a jó okológiai potenciál) eléréséhez (víztestenkénti intézkedési listát a 6-6, 6-7, 6-8, 6-9, 6-10 melléklelet.) Ez a lista tartalmazza a már eldöntött, folyamatban lévő, vagy tervezett intézkedéseket (kiemelten az alapintézkedéseket(46)), és ha ezek nem elegendőek, a szükséges kiegészítő intézkedéseket. A lista összeállításakor a költség-hatékonyságra vonatkozó szempontokat is érvényesíteni kellett.

46 Alapintézkedések a VKI VI. mellékleletében felsorolt irányelvekben (pl. Települési Szennyvíz, Nitrát irányelv) foglalt előírások hazai megvalósítását szolgáló intézkedések.
A részletes intézkedési program műszaki és gazdasági elemeinek tervezésével párhuzamosan, a különböző társadalmi egyeztetések (ld. 10. fejezet) eredményeinek figyelembevételével került és kerül sor a célkitűzések pontosítására és a mentességek indoklásának véglegesítésére:

Az intézkedések válogatásának, azok ütemezésének és a környezeti célkitűzések teljesítésének összehangolása többlépcsős iteratív folyamat eredménye, amelyben egyaránt szerepelnek a műszaki, a gazdasági és a társadalmi szempontok.

Az előző pontban bemutatottak alapján látható, hogy nem lehet minden víztestre egyszerre, 2015-ig, de 2021-ig sem elérni a környezeti célkitűzést, ezért már a VGT1-ben szükség volt szűrői kritérium rendszer felállítására, amely az intézkedésekre és a víztestekre vonatkozó időben rangsorolás szempontjait, azaz a prioritásokat rögzíti. Ez a prioritás rendszer lényegében nem változik. Kétféle prioritást kell alkalmazni a VKI felépítéséből és logikájából következően:

- ** intézkedési prioritástanvelő**
 - amely a különböző típusú intézkedéseket rangsorolja, a fontosságuk, a VKI-ban betöltött szerepük alapján;
 - **területi prioritást**, amely a víztesteket rangsorol, a fontosságuk, illetve egymáshoz, vagy a védett területekhez való kapcsolódásuk alapján - ezeknél a prioritás úgy érvényesül, hogy az intézkedéseket a célkitűzésnek megfelelő ütemezéssel kell megadni.

Intézkedés típusú prioritások

1. **Elsődleges prioritása van a VKI szerinti alapintézkedések** és az ún. további alapintézkedések, azaz a VKI céljait szolgáló, már hatályos tagállami szabályozási intézkedések, végrehajtásának. Ez független attól, hogy az intézkedések a VKI szempontjából szükségesek-e vagy éleghőnek-e célkitűzések eléréséhez.

Terület-víztest szintű prioritások

1. **Be kell illeszteni a terv második ciklusába azokat az intézkedéseket, amelyek elfogadott projektben szerepelnek és elősegítik egyes víztestek környezeti célkitűzéseinek elérését.**

2. **Előnyben kell részesíteni a VKI 4. cikk 1. c) alá eső, nem megfelelő állapotú védett területeket**, és a jó állapotuk eléréséhez szükséges intézkedéseket. A fürdő- és halas vizek esetében eleve 2015-ig kezelni kellett a problémákat, a természeti értékei miatt védett területeken és az ivóvízbázisok védőterületein pedig mindenütt magukkal kell akadályozni a további romlást, a természeti értékei miatt védett területek esetében a vizek nem megfelelő állapotát javító intézkedéseket legkésőbb 2021-ig meg kell valósítani, a szükséges monitoringgal és feltárással összehangolva.

3. **Azok a víztestek prioritást élveznek, ahol a jelenlegi támogatási ciklusban 2021-ig finanszírozható intézkedésekkel beleértve a szükséges, javasolt támogatási rendszerbeli változásokat elérhető a jó állapot.** A prioritás kiterjed azokra a jó állapotú víztestekre is, ahol a jó állapot fenntartása intézkedést igényel.
A VGT2 időszakában az intézkedések ütemezésénél még egy fontos szempont van, amit a korábbiaknál komolyabban figyelembe kell venni, ez pedig a stabil finanszírozási háttér.

A legfontosabb, a VGT-t alapjaiban befolyásoló Bizottsági dokumentumot, a Jelentéstételi Útmutatót, Reporting Guidance (továbbiakban RG) még nem fogadták el (jelenleg mi a 2015. októberi változatot használjuk). Ezen dokumentum alapján kell majd 2016 márciusában a WISE-ben beszámolni a tervekről.

Az RG-ben alapvető követelmény az intézkedési adatlapok kitöltése **OVGT 8-4 melléklet**, amelyben a mentességet érintő kérdés, hogy meg kell adni a vezető intézmény, felelős hatóság nevét, az intézkedés végrehajtásában közreműködő partnereket, az intézkedés költségei és finanszírozási módját, biztosított-e a finanszírozás a VGT2 időszak alatt, meg kell nevezni a pontos forrást is.

Nagyon fontos tehát, hogy nem tekinthető a VGT2 időszakában az Intézkedési program részének, aminek nincs, vagy nem lesz biztosítva, vagy nem biztosítható a forrása (legen az fejesztési, működtetési forrás, EU-s pénz, vagy hazai pénz).

A 2021. évi célkitűzések meghatározásakor tehát figyelembe kell venni, hogy az igénybe vehető állami és EU fejesztési források nagy része determinált, a 2014-2020-as eldöntött Operatív Programok és a Vidékfejesztési Program keretében. Jelentős szerepe lehet a VGT2 intézkedéseknek abban, hogy a rendelkezésre álló keretekből, amennyire csak lehet VKI intézkedéseket, vagy VKI konform fejesztéseket valósítsanak meg (pályázati kiírások, pótlólagos hazai források), Mindebből adódik, hogy a 2021-ig tervezett Intézkedési Programnak realisznak és megvalósíthatónak kell lennie.
Hangsúlyozni kell, hogy gyakorlati jelentősége mind a 2021-ig végrehajtandó intézkedéseknek, mind a 2027-ig végrehajtandó intézkedéseknek van. 2021-ig valós, ténylegesen 2021-ig megvalósítható intézkedéseket kell tervezni. Itt lényegében a VGT inkább követő szerepet játszik, döntően az adott kereteken belül mozoghat. Bár a célokat (pl. enyhébb célkitűzések többszöri alkalmazását) a következő tervben (2021-ben), a pontosabb állapotértékelés, az előkészítő vizsgálatok, a megvalósítás addigi tapasztalatai és a változó finanszírozási lehetőségek figyelembevételével felül kell vizsgálni és a megvalósíthatóságot újraértékelni, mégis a most 2027-ig megfogalmazott intézkedésekkel már ténylegesen el kell érni a célokat. Egyetlen kivétel lehet, ha minden intézkedést megért az ország a jó állapot elérése érdekében, de természeti okok miatt 2027 utánra csúszik át a tényleges célok elérése. A VGT következő tervének harmadik részében (2027-ig) a megvalósítottnak a következő intézkedésekben (2022-ig) végrehajtandó intézkedések sikerességét újraértékelni kell. A célkitűzéseknél a 2027-ig végrehajtandó intézkedések egy részét elő felkészítésére és a következő tervben az 2022-ig végrehajtandó intézkedésekre kell figyelembe vállalni a változó finanszírozási lehetőségeket is.

7.3 Környezeti célkitűzések elérésének ütemezése

A fentiekben bemutatott tervezési folyamat eredményeként kialakult a víztestenkénti intézkedések és ehhez kapcsolódóan a célkitűzések elérésének előzetes ütemezése. Az intézkedések ütemezését az egyes intézkedéscsoportokra a 8-6 melléklet, a 8-7 melléklet, a 8-8 melléklet, a 8-9 melléklet és a 8-10 melléklet mutatja be.

A 7-1 melléklet bemutatja a víztestenkénti célkitűzések elérésének előzetes ütemezését, figyelembe véve az állapotértékelés eredményeit, az állapotértékelés megfelelőségét, az intézkedések reális ütemezését, az elvégzési állapot hatás megnézéséhez. A felszíni víztestek vonatkozásában külön megőrzi azok fizikai állapotát a víztestek kialakítása és terhelésektől függő ökológiai állapotjelenségek és mentességű indokokat is, amit külön oszloban jelöltünk.

Eredmények:

A felszín alatti víztestek közül 1 van, ahol jelenleg nem jól a mennyiségi állapot (azaz gyenge vagy jó, de gyenge kockázatú), itt csak 2027-re lehet elérni a cél. A kémiai jó állapotot jelenleg 6 víztesten sikerült elérni, 10 olyan víztest van, ahol nem jó a kémiai állapot, ezeknél a víztesteknél 2027-ig várható a jó kémiai állapot elérése.
7-1. táblázat: A jó állapotot elérő felszín alatti víztestek aránya időszakonként, a minősítés típusa szerint

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016-2021</th>
<th>2022-2027</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mennyiség</td>
<td>93,75%</td>
<td>0,00%</td>
<td>6,25%</td>
<td>100,00%</td>
</tr>
<tr>
<td>Kémia</td>
<td>37,50%</td>
<td>0,00%</td>
<td>62,50%</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

A vízfolyás víztestek (83) közül 74 van, ahol jelenleg nem jó az ökológiai állapot, vagy az ökológiai potenciál és ezért a célkitűzés a „jó ökológiai állapot elérhető”, illetve a „jó ökológiai potenciál elérhető”. Ezek közül főleg a KEOP-os, ROP-os szennyvíztisztítás korszerűsítési fejlesztések és diffúz szennyezést csökkentő beavatkozások eredményeként 2015-re 11 víztest eléri a fiziko-kémiai jó állapotot. További 29 olyan víztest van, amelyénél 2021-re a fiziko-kémiai állapot várhatóan az ökológiai állapot/potenciál jó minősítést kaphat.

Az állóvizek esetében a még nem jó ökológiai állapotú/potenciálú 8 víztest között nincs olyan, amelyik 2015-re eléri a jó fiziko-kémiai állapotot, viszont 7 van, amelyik 2021-re éri el a jó fiziko-kémiai állapotot.

A fiziko-kémiai jó állapot elérése után bizonyos időnél kell eltelnie a jó ökológiai állapot/potenciál bekövetkezéséhez.

A tavaknál, a kis esésű, nagyon kis esésű kis és közepes vízfolyásoknál az üledék és a lassú vízcsere miatt kell 6 év a fiziko-kémiai jó állapot elérése után ahhoz, hogy a biológiai állapot is jó legyen. A többi vízfolyás esetében a jó fiziko-kémiai állapot elérése után 3 évvel már tervezhető a jó ökológiai állapot.

A biológiai folyamatok alapján azt lehet megállapítni, hogy 2021-re jó ökológiai állapot/potenciál elérhető a felszíni vízfolyás víztestek közül 11-nél, 2027-ig a VGT2 intézkedései alapján 29 víztestnél. Az állóvizek esetében 2027-re 7 víztest éri el a jó állapotot.

A VGT3 ideje alatt a folyóvízekenél 34, az állóvízekenél 1 víztesten kell intézkedéseket megvalósítani annak érdekében, hogy 2027-re a fiziko-kémiai állapot jó legyen, ennek hatására a természeti folyamatok közreműködésével 2027 után várható a jó ökológiai állapot/potenciál elérése.

A vízfolyás víztestek közül jelenleg jó kémiai állapotú 37 db, 46 pedig vagy nem jó állapotú, vagy adathiány miatt nem lehetett minősíteni. Az állóvizek közül jelenleg 2 a jó, 8 a nem jó kémiai állapotú, vagy adathiány miatt nem minősített víztest

A jelenleg nem jó állapotú vízfolyások (46 db), állóvizek (8 db) 2027-re érhetik el a jó kémiai állapotot.
7-2. táblázat: A jó ökológiai állapotot/potenciált elérő felszíni víztestek száma
időszakonként, a víztestek típusa szerint

<table>
<thead>
<tr>
<th>Víztestek típusa</th>
<th>2015</th>
<th>2016-2021</th>
<th>2022-2027</th>
<th>2027+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vízfolyás</td>
<td>9</td>
<td>11</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>Állóvíz</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Összes felszíni víz</td>
<td>11</td>
<td>11</td>
<td>36</td>
<td>35</td>
</tr>
</tbody>
</table>

7-1. ábra: Felszíni víztestekre vonatkozó ökológiai célkitűzések megvalósulása

2021-ig összesen a vízfolyások 24%-az állóvizek 20%-a éri el a jó állapotot/potenciált. 2022-2027-ig a vízfolyások 35%, az állóvizek döntő többsége 70%-a éri el a jó ökológiai állapot/potenciált. A vízfolyás víztestek 41%-a, az állóvíz víztestek 10%-a a jó ökológiai állapot/potenciált várhatóan csak 2027 után éri el.
8 Intézkedési program

8.1 VGT1 Intézkedéseinek, projektjeinek megvalósulása

A VKI előírja, hogy a vízgyűjtő gazdálkodási terv minden korszerűsítésének tartalmaznia kell az előrehaladás értékelését, ezen belül az intézkedések megvalósulását, valamint minden olyan intézkedés összefoglalását és magyarázatát, amelyet előirányoztak a korábbi vízgyűjtő gazdálkodási tervben, de nem tettek meg. AZ **OVGT 8-1 fejezete** értékelni a VGT1 átfogó és műszaki intézkedéseinek országos végrehajtását, elemezve a **VGT1 8.8. fejezetében** szereplő intézkedési program összefoglaló táblázatában tervezett intézkedések sorsát. Ez a táblázat tartalmazta mind a meglévő, már jelenleg alkalmazott intézkedéseket, mind a tervezett intézkedéseket, bemutatva a **felelősöket és határidőket.** Jelen fejezetben csak a részvízgyűjtőn - az Operatív Programok támogatásával – megvalósuló projekteket mutatjuk be és nem foglalkozunk a csak országos szinten értékelhető intézkedésekkel (pl. az ÚMVP-ből finanszírozott agrár intézkedések).

A Balaton részvízgyűjtőn 2012-ig megvalósult, illetve folyamatban lévő fejlesztéseket átnéztük olyan szempontból, hogy az adott projekt, VGT intézkedést valósíts-e meg, vagy tartalmaz-e VGT1-ben tervezett intézkedést. Sok esetben egy projekt keretében több fajta VGT intézkedés és egyéb vízgazdálkodási célú beavatkozás is megvalósult. Az értékelés eredményét és az operatív programokból VKI célokra költött összegeket és projekt darabszámokat pályázati konstrukcióként a **8-1. melléklet** mutatja be.
8-1. táblázat: Célok, intézkedések projekt száma intézkedés típusonként 2012-ig a Balaton részvízgyűjtőn, db

<table>
<thead>
<tr>
<th>Intézkedés típusok</th>
<th>Projektek száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP1. Területi agrár intézkedési csomag</td>
<td>0</td>
</tr>
<tr>
<td>IP2. Vízfolyások árterére vagy hullámterére, valamint az állóvizek parti sávjára vonatkozó agrár intézkedési csomag</td>
<td>0</td>
</tr>
<tr>
<td>IP3. Vízfolyások és állóvizek medrét érintő intézkedési csomag</td>
<td>13</td>
</tr>
<tr>
<td>IP4. Vízfolyások medrét érintő létesítményekkel kapcsolatos intézkedési csomag</td>
<td>0</td>
</tr>
<tr>
<td>IP5. Kikötőkkel és a hajózás fenntartásával kapcsolatos intézkedési csomag</td>
<td>0</td>
</tr>
<tr>
<td>IP6: Halászati és horgászati tevékenységgel kapcsolatos intézkedési csomag</td>
<td>2</td>
</tr>
<tr>
<td>IP7: Települési intézkedési csomag</td>
<td>8</td>
</tr>
<tr>
<td>IP8: Kommunális szennyvízkezelésre vonatkozó intézkedési csomag, felszíni vizeket érintő intézkedések</td>
<td>17</td>
</tr>
<tr>
<td>IP9: Kommunális szennyvízkezelésre vonatkozó intézkedési csomag, felszíni alatti vizeket érintő intézkedések</td>
<td>21</td>
</tr>
<tr>
<td>IP10: Felszíni vizekbe történő pontoszerű bevezetésekkel kapcsolatos egyéb intézkedések</td>
<td>3</td>
</tr>
<tr>
<td>IP11: Az ivóvízellátás minőségét és biztonságát javító intézkedések</td>
<td>27</td>
</tr>
<tr>
<td>IP12: Fenntartható vízhasználatot megvalósítása</td>
<td>48</td>
</tr>
<tr>
<td>IP13: Szennyezett területek és haváriák veszélyességét csökkentő intézkedések (felszíni és felszín alatti vizekre vonatkozóan)</td>
<td>16</td>
</tr>
<tr>
<td>IP14: Károsodott, védett élőhelyekkel és más védett területekkel kapcsolatos egyedi intézkedések</td>
<td>20</td>
</tr>
<tr>
<td>ÁT: Átfogó intézkedések</td>
<td>181</td>
</tr>
<tr>
<td>Összesen</td>
<td>356</td>
</tr>
</tbody>
</table>
programjának végrehajtása elindult, sok intézkedés megvalósult, de az intézkedések jelentős részének végrehajtása, különösen a hidromorfológiai beavatkozások közül a következő tervezési időszakra maradt.

A Balaton részvízgyűjtő területére vonatkozóan 2015 áprilisáig a KEOP-ban és a ROP-okban megítélt támogatásokat az alábbi táblázat foglalja össze, ez gyakorlatilag már a 2007-2013. finanszírozási időszak teljes támogatását tartalmazza. A Balaton részvízgyűjtőn támogatások 88 %-át a KEOP biztosítja, a Rop-ok részaránya összesen 12 %. Az alap-intézkedésekre fordított összeg a teljes támogatásnak 64 %-a.
8-2. táblázat: Az operatív programok VKI célokat szolgáló intézkedéseinek pénzügyi jellemzői 2007-2015 a Balaton részvízgyűjtőn**

<table>
<thead>
<tr>
<th>Forráshely</th>
<th>Megnevezés</th>
<th>Támogatott projektek száma</th>
<th>Támogatott projekt összege</th>
<th>Leszerődött összköltség</th>
<th>Kifizetett összeg</th>
<th>Támogatási arány %</th>
<th>Teljesítés arány összegben %</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEOP 2.2.2</td>
<td>Monitoring rendszerek fejlesztése</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Környezetvédelmi célú informatikai rendszerek fejlesztése</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ROP-ok</td>
<td>Környezetvédelmi célú informatikai fejlesztések a közigazgatásban*</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>KEOP 2.2.2</td>
<td>A VKI végrehajtsához kapcsolódó informatikai rendszer fejlesztése</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>KEOP 6.3.0</td>
<td>Környezetvédelmi célú informatikai fejlesztések a közigazgatásban*</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>KEOP 1.3.0</td>
<td>Ivóvízminőség-javítás</td>
<td>12</td>
<td>5 330,8</td>
<td>6 009,8</td>
<td>4 230,7</td>
<td>88,7</td>
<td>79,4</td>
</tr>
<tr>
<td>KEOP 1.2.0</td>
<td>Szennyvízelvezetés és tisztítás</td>
<td>14</td>
<td>21 426,0</td>
<td>23 902,7</td>
<td>8 069,5</td>
<td>89,6</td>
<td>37,7</td>
</tr>
<tr>
<td></td>
<td>Természetvédelem</td>
<td>6</td>
<td>1 501,6</td>
<td>1 501,6</td>
<td>1 255,3</td>
<td>100,0</td>
<td>83,6</td>
</tr>
<tr>
<td>ROP-ok</td>
<td>Élőhelyek és élettelen természeti értékek megőrzését, helyreállítását szolgáló beruházások*</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>KEOP 3.1.2</td>
<td>Élőhelyvédelem- és helyreállítás, vonalas létesítmények természetkárosító hatásának mérsékélése*</td>
<td>6</td>
<td>1 501,6</td>
<td>1 501,6</td>
<td>1 255,3</td>
<td>100,0</td>
<td>83,6</td>
</tr>
<tr>
<td></td>
<td>Alapintézkedések összesen</td>
<td>32</td>
<td>28 258,4</td>
<td>31 414,0</td>
<td>13 555,5</td>
<td>90,0</td>
<td>48,0</td>
</tr>
<tr>
<td>Források</td>
<td>Támogatott projektek száma</td>
<td>Leszerződött összeg</td>
<td>Leszerződött összköltség</td>
<td>Kifizett összeg</td>
<td>Támogatási arány</td>
<td>Teljesítés aránya összegben</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Forráshely</td>
<td>db</td>
<td>MFT</td>
<td>MFT</td>
<td>MFT</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>KEOP 2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komplex vízvédelmi beruházások</td>
<td>1</td>
<td>5 629,7</td>
<td>5 629,7</td>
<td>5 629,2</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
<tr>
<td>KEOP 2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vízbázisvédelem</td>
<td>4</td>
<td>172,5</td>
<td>172,5</td>
<td>169,7</td>
<td>100,0</td>
<td>98,4</td>
<td></td>
</tr>
<tr>
<td>ROP-ok 2000 LE alatti települések szennyvízkezelése</td>
<td>14</td>
<td>2 755,0</td>
<td>3 342,2</td>
<td>2 450,6</td>
<td>82,4</td>
<td>89,0</td>
<td></td>
</tr>
<tr>
<td>KEOP 2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A tájgazdálkodást megalapozó vízi infrastruktúra kiépítése</td>
<td>2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>KEOP 1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Települési szilárdhulladék-gazdálkodási rendszerek fejlesztése*</td>
<td>0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>ROP-ok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helyi és kistérségi szintű rekvitvációs programok elvégzése</td>
<td>4</td>
<td>118,3</td>
<td>136,0</td>
<td>114,2</td>
<td>87,0</td>
<td>96,5</td>
<td></td>
</tr>
<tr>
<td>KEOP 2.3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Települési szilárdhulladék-lerakók rekvitvációjá</td>
<td>0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>KEOP 2.4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kármantestíztés</td>
<td>2</td>
<td>5 015,8</td>
<td>5 015,8</td>
<td>4 204,2</td>
<td>100,0</td>
<td>83,8</td>
<td></td>
</tr>
<tr>
<td>ROP-ok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belterületi csapadékvíz-elvezetés és gyűjtés*</td>
<td>22</td>
<td>2 274,0</td>
<td>2 561,4</td>
<td>2 025,8</td>
<td>88,8</td>
<td>89,1</td>
<td></td>
</tr>
<tr>
<td>ROP-ok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helyi és térségi jelentőségű vízrendszerek rekonstrukciója*</td>
<td>0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>További Alap és Kiegészítő intézkedések összesen</td>
<td>49</td>
<td>15 965,4</td>
<td>16 857,6</td>
<td>14 593,7</td>
<td>94,7</td>
<td>91,4</td>
<td></td>
</tr>
<tr>
<td>Intézkedések mindösszesen</td>
<td>81</td>
<td>44 223,8</td>
<td>48 271,6</td>
<td>28 149,1</td>
<td>91,6</td>
<td>63,7</td>
<td></td>
</tr>
<tr>
<td>Ebből KEOP</td>
<td>41</td>
<td>39 076,5</td>
<td>42 232,1</td>
<td>23 558,6</td>
<td>92,5</td>
<td>60,3</td>
<td></td>
</tr>
<tr>
<td>ROP-ok</td>
<td>40</td>
<td>5 147,3</td>
<td>6 039,5</td>
<td>4 590,6</td>
<td>85,2</td>
<td>89,2</td>
<td></td>
</tr>
</tbody>
</table>

*További Alap és Kiegészítő intézkedések összesen

**Ezen intézkedéseknek csak egy része VKI célú

*Ezen intézkedéseknek csak egy része VKI célú

**A projekt település alapján történt a legyűjtés, nem a projektek teljes településlistái alapján

Forrás: Miniszterelnökség EMIR adatbázisa, 2015 április

8. fejezet Intézkedési program – 184 –
8.2 Intézkedések Programja, 2015-2027

Az intézkedések programjának célja az előző VGT-hez képest nem változott, azaz a cél a 6. fejezetben bemutatott jelentős vízgazdálkodási problémák megoldása, a vízfolyásokra, állóvizekre és felszín alatti vizekre, valamint a védett területekre meghatározott, felülvizsgált környezeti célkitűzések elérése. Tartalmazza a szükséges szabályozási, műszaki, finanszírozási, intézményrendszeri feladatokat.

Az intézkedések tervezésének alapvető követelmény a hatékonyság, ami annyit jelent, hogy a DPSI sorrendet kell követni.

- A leghatékonyabb intézkedések a hajtóerőt (igényt) befolyásoló beavatkozások (pl. gazdasági szabályozók, jogi szabályozások, határértékek, víztakarékos berendezések alkalmazása, oktatás, K+F, monitoring képességfejlesztés, intézményfejlesztés). „D”
- Második a hatékonysági rangsorban a terheléscsökkentő intézkedések sora (szennyvíztisztítás hatásfokának növelése, tápanyag-gazdálkodás); „P”
- Ezután következnek az állapotjavító intézkedések (pl. rehabilitáció, vízpótlás); „S”
- Végül, ha a fenti intézkedések nem érnek el megfelelő eredményt, vagy nincs másra mód akkor a hatás mérséklő intézkedésekre kerül sor (hortós, hullámtér revitalizációja, egyes árvízvédelmi intézkedések kompenzációja), „I”

Ebből adódik, hogy a VGT2 intézkedési programjának tartalma lényegében nem sokat változott a VGT1-hez képest, de a hangsúlyok eltolódottak:

- A korábbinál nagyobb hangsúlyt kap a hajtóerők és terhelések (DP), illetve az intézkedések (R) közötti kapcsolat egyértelmű bemutatása, vagyis az intézkedések gyakorlati alkalmazása főként a terhelés elemzés eredményein alapul.
- A VGT2 intézkedései között jelentősebb szerepe van a szabályozási intézkedéseknek, kidolgozott szabályozási koncepcióknak, gazdasági ösztönzőknek, vízárpolitikai intézkedéseknak és a „puhább” intézkedéseknak (ütemutatók, tanácsadás, képzés).
- A tervez tőbb háttér információkat szolgáltat a tervezőknek, a döntéshozóknak, a lakosságnak.
- A VGT horizontális jellege erősödik, a VKI célkitűzésekhez minden projektbe hozzá kell járulnia, a vízgazdálkodási projektekben kell lennie VGT projekt elemnek.
- A műszaki Intézkedések részletesebben lesznek kidolgozva, a legfontosabb intézkedésekre jó gyakorlatok kerülnek bemutatásra.

A VGT1 intézkedési programja iteratív szakmai és társadalmi egyeztetési folyamat eredményeként alakult ki, és ez a nyílt tervezési eljárás érvényes a felülvizsgálatára is. A fejezet bemutatja a a részvízgyűjtőn és a hozzátartozó alegységekre vonatkozó a társadalmi párbeszédre ajánlott intézkedéseket. Az átfogó (zömében a hajtóerőkre ható) intézkedéseket az OVGT 8.4 fejezete mutatja be a következő csoportosításban:

- Jogalkotási feladatok, hatósági és igazgatási munka erősítése
- Monitoring intézkedések és informatikai fejlesztések
- Vízi szolgáltatások költségeinek visszatérülésére tett intézkedések. Gazdaság-szabályozási koncepció és intézkedések
Kutatás, fejlesztés, képességfejlesztés, szemléletformálás

Az intézkedések programja kidolgozásának VGT2-ben alkalmazott módszertani lépései foglalja össze a 8-1. ábra.

8-1. ábra: Intézkedések tervezésének módszertana a VGT2-ben

A VGT1-hez képest a módszertanban megjelenő különbségek:
- Az alkalmazható intézkedések rendszerének összeállítása a terhelés típusok és az intézkedési csomagok megszabta keretek között
- Releváns indikátorok kiválasztása terhelés típusok és intézkedési csomagok szintjén
- Egyes intézkedések alkalmazásának, ütemezésének és a környezeti célkitűzéseknek (mentességeknek) a meghatározása a választott indikátorokkal összhangban
- A tervezési egység (Magyarországra 1 országos és 4 részvízgyűjtő terv készül) szintjén készülő jelentés szerkezete és tartalma, amely terhelés típusonként mutatja be az alkalmazott intézkedési csomagokat és a kiválasztott indikátorok jelenleg érvényes és 2021-re, illetve 2027-re előrejelzett értékeit.
A Bizottság útmutatója az intézkedések tervezése céljából a 8-3. táblázatban bemutatott terhelési struktúrát határozza meg. A táblázatban feketével jelenik meg az eredeti javaslat, míg kék színnel a hazai szempontok alapján definiált új típusokat.

8-3. táblázat: Definiált terhelés típusok

<table>
<thead>
<tr>
<th>A terhélés kódja és rövid neve (hajtóerő és forrás)</th>
<th>Érintett víz kategória</th>
<th>A terhélés leírása</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pontszerű szennyezések</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Települési szennyez bevezetése felszíni befogadóba</td>
<td>vízfolyás, állóvíz</td>
<td>Minden településről, akár az EU Települési Szennyvíz Irányelve hatálya alá tartozik, akár nem. Beletartozik a városi, nem ipari területekről gyűjtött szennyvíz is. Belé értendők a tisztítás nélküli vagy nem megfelelően tisztított pontoszerű kibocsátások is.</td>
</tr>
<tr>
<td>1.2 Egyesített rendszerrel érkező nem kezelt, hígított szennyvíz bevezetése felszíni befogadóba</td>
<td>vízfolyás, állóvíz</td>
<td>Nagy csapadék idején, az egyesített rendszeren a szennyvíztelepre érkező hígított szennyvíz pontoszerű bevezetése felszíni befogadóba, kapacitáshiány miatt. A telepen kívüli túlfolyás diffúz szennyezés (lásd 2.1 terhelés), az elválasztott rend-szeren érkező csapadékvíz pontoszerű bevezetése az 1.9.4 terhelésnél. jelenik meg.</td>
</tr>
<tr>
<td>1.3 IED (Ipari Emissziós Irányelv) alá tartozó üzemekből felszíni vízbe</td>
<td>vízfolyás, állóvíz</td>
<td>Ipari pontforrások E-PRTR szerinti üzemekből</td>
</tr>
<tr>
<td>1.4 IED alá nem tartozó üzemekből felszíni vízbe</td>
<td>vízfolyás, állóvíz</td>
<td>Egyéb ipari pontforrások nem E-PRTR szerinti üzemekből</td>
</tr>
<tr>
<td>1.5 Felhagyott szennyezett területek (ipar, hulladék, honvédelmi, közlekedés)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Felhagyott ipari üzem vagy korábbi ipari tevékenység miatt szennyezés, illegális ipari hulladék elhelyezés vagy régi baleseti szennyezés maradványa. Pontszerű előfordulás</td>
</tr>
<tr>
<td>1.6 Létező hulladéklerakók (kommunális, ipari)</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Települési vagy ipari hulladéklerakók pontforrásai.</td>
</tr>
<tr>
<td>1.7 Bányavíz bevezetés felszíni vízbe</td>
<td>vízfolyás</td>
<td>Külszíni vagy felszín alatti bányászatból származó pontforrások. A vízkivétel a bányászat folytatásához szükséges.</td>
</tr>
<tr>
<td>1.8 Halastó és horgásztó</td>
<td>vízfolyás</td>
<td>Halastavak vagy horgásztavak leeresztésből származó pontforrás</td>
</tr>
<tr>
<td>1.9.1 Egyéb: Termálvíz bevezetés felszíni vízbe</td>
<td>vízfolyás</td>
<td>Használt termálvízek felszíni vízekbe történő bevezetése.</td>
</tr>
<tr>
<td>1.9.2 Egyéb: Hűtővíz bevezetés felszíni vízbe</td>
<td>vízfolyás, állóvíz</td>
<td>Hűtővizek vízfolyásokba vagy tavakba történő visszavezetésből adódó hőterhelés.</td>
</tr>
<tr>
<td>1.9.3 Egyéb: Állattartó - telepekől származó szennyvíz, szennyezés</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Mezőgazdasági tevékenységből (főként állattartótelepekől) származó pontforrások.</td>
</tr>
<tr>
<td>1.9.4 Egyéb: Belvizek és városi csapadékvíz bevezetése felszíni</td>
<td>vízfolyás, állóvíz</td>
<td>Belvizek vagy települési csapadékvízek pontoszerű bevezetése felszíni befogadókba.</td>
</tr>
</tbody>
</table>
2. Diffúz szennyezések

2.1 Települési lefolyásból (kertek, burkolt felületek, közterület, légköri kiülepedés)

<table>
<thead>
<tr>
<th>A terhelés kódja és rövid neve (hajtóerő és forrás)</th>
<th>Érintett víz kategória</th>
<th>A terhelés leírása</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9.5 Egyéb: Szakszerűtlenül kiképzett kutak</td>
<td>felszín alatti víz</td>
<td>Szakszerűtlen kút kiképzésből származó közvetlen szennyezőanyag bevezetés felszín alatti vízbe.</td>
</tr>
</tbody>
</table>

2.2 Mezőgazdasági területről (szántó, ültetvény, legelő)

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

2.3 Erdészeti tevékenységből

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

2.4 Közlekedésből

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

2.5 Felhagytott szennyezett területek (ipar, közlekedés – nagy kiterjedésű)

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

2.6 Csatornahálózatba nem bekapcsolt forrásból

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

2.7 Légkőri kiülepedés

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

2.10 Egyéb: Szennyezett üledékből

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

3. Vízkivételek és átvezetések

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

3.1 Mezőgazdasági céllal

| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |

3.2 Közüzemi vízellátás

<p>| A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása |</p>
<table>
<thead>
<tr>
<th>A terhelés kódja és rövid neve (hajtóerő és forrás)</th>
<th>Érintett víz kategória</th>
<th>A terhelés leírása</th>
</tr>
</thead>
<tbody>
<tr>
<td>céljára</td>
<td>állóvíz, felszín alatti víz</td>
<td></td>
</tr>
<tr>
<td>3.3 Ipari célra</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Ipari célú vízkivételek vagy átvezetések, kivétel hűtővíz.</td>
</tr>
<tr>
<td>3.4 Hűtővíz célra</td>
<td>vízfolyás</td>
<td>Vízkivétel vagy átvezetés hűtővíz célra.</td>
</tr>
<tr>
<td>3.5 Halgazdaság és rekreáció (horgászat) számára</td>
<td>vízfolyás</td>
<td>Vízkivétel vagy átvezetés oldaltározóként működő halastavak illetve rekreációs (horgász) tavak számára.</td>
</tr>
<tr>
<td>3.6 Egyéb: Termálvíz hasznosítása</td>
<td>felszín alatti víz</td>
<td>Termálvízkivételek fürdési, gyógyászati és energiahasznosítási célra.</td>
</tr>
</tbody>
</table>

4.1 Vonalvezetés/mederforma/ parti sáv/ morfológiai módosítása

4.1.1 Árvízvédelem miatt	vízfolyás	Vízfolyások hosszirányú és keresztirányú szabályozása, (mederátvágás, töltés, módosított mederforma és növényzónák, árvédelmi töltésekkal szűkített ártér).
4.1.2 Mezőgazdasági céljára	vízfolyás	Vízfolyások hosszirányú szabályozása, trapézformájú meder, medermélyítés drénezési céljával, átalakított növényzónák.
4.1.3 Hajózás miatt	vízfolyás	Vízfolyások kis és középvízi szabályozása, kotrás, kikötők.
4.1.4 Egyéb: Belterületi szakaszok miatt	vízfolyás, állóvíz	Belterületi vízfolyás és tápok átalakítása közlekedési, rekreációs és kiemelt árvízvédelmi célja.
4.1.5 Egyéb: Rekreációs céljára állóvizek	vízfolyás, állóvíz	Vízfolyások, tavak partjának és a parti növényzónának a módosítása (pl. strand kialakítása, horgászat) kotrás.

4.2 Gáta, fenékküszöbök, zsírlepek, elzárások

4.2.1 Energiatermelés miatt	vízfolyás	Mederelzárás tározás és vízszintelmezés céljából.
4.2.2 Árvízvédelmi céljára	vízfolyás	Tározás árvízcsúcs csökkentési céljával.
4.2.3 Ivóvízellátási céljára	vízfolyás	Ivóvíztározók kialakítása.
4.2.4 Mezőgazdasági céljára	vízfolyás	Mederelzárás tározás vagy vízszint emelés vízikivezetés céljából.
4.2.5 Rekreációs céljára	vízfolyás, állóvíz	Mederelzárás tározási céljával, duzzasztás vízszintelmezési vagy vízikivezetési céljával.
4.2.6 Ipari céljára	vízfolyás	Mederelzárás tározási vagy vízszintelmezési céljával közvetlen vízkivétel vagy vízikivezetés céljából.
4.2.7 Hajózás céljára	vízfolyás	Duzzasztás vízmélység növelő céljával.
4.2.8 Egyéb, Halgazdálkodás céljára	vízfolyás, állóvíz	Mederelzárás tározási vagy duzzasztási céljával, esetleg vízszintelmezés vízikivezetés céljából.

4.3 Változások a vízjárásban

<p>| 4.3.1 Mezőgazdaság miatt | vízfolyás, állóvíz | Természetesnél nagyobb vízhozamok öntözési vagy balvíz elvezetési |</p>
<table>
<thead>
<tr>
<th>A terhelés kódja és rövid nev (hajtóerő és forrás)</th>
<th>Érintett víz kategória</th>
<th>A terhelés leírása</th>
</tr>
</thead>
<tbody>
<tr>
<td>felszín alatti víz</td>
<td>céllal (esetenként, nem megfelelő területi vízgazdálkodásból adódóan).</td>
<td></td>
</tr>
<tr>
<td>4.3.2 Hajózás miatt</td>
<td>vízfolyás</td>
<td>Vízmegosztás hajózó csatornák kialakítása miatt. Nem jellemző Magyarországon.</td>
</tr>
<tr>
<td>4.3.3 Vízenergia-termelés miatt</td>
<td>vízfolyás</td>
<td>Csúcsrajzátás miatt változó alvízi vízjárás, vízmegosztás az üzem csatorna és a főmeder között.</td>
</tr>
<tr>
<td>4.3.4 Közüzemi vízellátás miatt</td>
<td>vízfolyás</td>
<td>Tározók alvízi leeresztése jelentősen eltér a természettestől.</td>
</tr>
<tr>
<td>4.3.5 Halgazdálkodás miatt</td>
<td>vízfolyás</td>
<td>Tározók alvízi leeresztése jelentősen eltér a természettestől.</td>
</tr>
<tr>
<td>4.3.6 Egyéb: Természetvédelem miatt</td>
<td>vízfolyás</td>
<td>Ökológiai, természetvédelmi célú vízpótlás átvezetése miatt a természettestől eltérő vízjárás</td>
</tr>
<tr>
<td>4.3.7 Egyéb: Szennyvíz-bevezetés miatt</td>
<td>vízfolyás</td>
<td>Szennyvízbevezetések miatt a természettestől jelentően eltérő kisvízi hozamok</td>
</tr>
<tr>
<td>4.3.8 Egyéb: Helytelen vízmegosztás árapasztó csatorna és főmeder között</td>
<td>vízfolyás</td>
<td>Árapasztó csatornák esetén nem megfelelő vízmegosztás, az ökológiai kisvíz nincs biztosítva.</td>
</tr>
<tr>
<td>4.4. Felszínű vízek és vizes élőhelyek kiszáradása</td>
<td>vízfolyás, állóvíz</td>
<td>Kiszáradt medrek, vízes élőhelyek aszályelterelés vagy gyors vízelvezetés miatt</td>
</tr>
<tr>
<td>5.1 Felszínű vízebe juttatott idegen fajok vagy kórokok</td>
<td>vízfolyás, állóvíz</td>
<td>Ide tartoznak az idegenhonos özönfajok, amelyek kiszoríthatják a természetes fajokat az élőhelyről.Tudatos betelepítés, véletlen behurcolás, éghajlatváltozás miatti invázió. Kórokok bejutása és terjedése</td>
</tr>
<tr>
<td>5.2 Állatok/növények tenyésztése/termelése és kivétele</td>
<td>vízfolyás, állóvíz</td>
<td>Kereskedelmi halászat vagy rekreációs/sporthorgászat, kereskedelmi növény-, vagy alga kitermelés a víztestekből. Például nádgazdálkodás, halgazdálkodás természetes vízeiken.</td>
</tr>
<tr>
<td>5.3 Szemelés, illegális hulladéklerakás, úszószemét</td>
<td>vízfolyás, állóvíz, felszín alatti víz</td>
<td>Illegális hulladéklerakókból származó bemosódás, köztéri szemelés, házásból eredő szemét. Árvíz idején megnövekvő úszószemét, árvíz után ártéri lerakódás.</td>
</tr>
<tr>
<td>6.1 Felszín alatti vizekbe mesterséges beszívárogtatás, visszasajtolás</td>
<td>felszín alatti víz</td>
<td>Talajvízdúsítás, szénhidrogén termelő kutakból a kivet folyadék, illetve használt termálvíz visszasajtolása mint potenciális veszélyforrás (nem megfelelő minőség, illetve nem megfelelő visszasajtolási szint miatt)</td>
</tr>
<tr>
<td>6.2 Felszín alatti víz jelentős sülyedése nem vízigények kielégítése miatt</td>
<td>felszín alatti víz</td>
<td>Ez a kategória foglalja magába azokat a tevékenységeket, amelyek felszín alatti víz szintjének csökkentésével tesznek lehetővé felszín alatti tevékenységeket (tipikusan bánásvász vagy nagy építkezéseken). Vagy a lététsímmény a természeteshez képest növeli a vízelvonást (ún. közvetett vízkivételek), mint pl. mély csatornák, kavicsbánya tavak, elterelt folyók.</td>
</tr>
</tbody>
</table>
A terhelés kódja és rövid neve (hajtóerő és forrás) | Érintett víz kategória | A terhelés leírása
--- | --- | ---
7. Egyéb terhelések, Védett területeket érő terhelések

7.1 Védett természeti területeket károsító vízjárás változás
vízfolyás, állóvíz, felszín alatti víz
A védett természeti területek vízjárásában okozott olyan egyedi elváltozások, amelyek a 3. és a 4.3 pontban tárgyalt terhelések esetében általában nem minősül jelentősnek. (pl. jelentős lokális felszín alatti vízkivétel Natura 2000-es terület közelében.)

7.2 Védett természeti területeket károsító szennyezés
vízfolyás, állóvíz, felszín alatti víz
A védett természeti területeket érő olyan vízminőségű hatások, amelyek az 1. és 2. és 5. pontban tárgyalt terhelések esetében általában nem minősülnek jelentősnek (pl. Natura 2000-es erdők hullámterére vagy nitrat-érzékenység területen.)

7.3 Ivóvízbázisok területét érintő szennyezések
vízfolyás, állóvíz, felszín alatti víz
Ivővízbázisok védőterületén található szennyezőforrások, amelyek veszélyeztetik a termelt víz minőségét. Egyébként nem jelentős (pl. csatornázatlan település).

7.4 Fürdőhelyeket érő szennyezések
vízfolyás, állóvíz
A fürdőhelyek védősávjában vagy hatásterületén előforduló szennyezőforrások, amelyek az egyedi előírások miatt vállnak jelentössé.

8. Ismeretlen eredetű hazai vagy külföldi terhelések
Csak akkor releváns, ha az állapot nem éri el a jót, és a terhelés nem ismert, illetve valószínűsíthető a külföldi eredet (9. Régi szennyezések)

7.1 Védett természeti területeket károsító vízjárás változás

7.2 Védett természeti területeket károsító szennyezés

7.3 Ivóvízbázisok területét érintő szennyezések

7.4 Fürdőhelyeket érő szennyezések

8. Ismeretlen eredetű hazai vagy külföldi terhelések

8. fejezet

8. táblázat: Intézkedési csomagok (KTM)

A táblázat megjegyzése

Az intézkedés célja

Kód	Az intézkedés célja	Megjegyzés
1 | Szennyvíztisztítótelepe építése és korszerűsítése |
2 | Mezőgazdasági eredetű tápanyagszennyezés csökkentése |
3 | Mezőgazdasági eredetű pesztlid szennyezés csökkentése |
4 | Bekövetkezett szennyezések csökkentése, felszámolása, beleértve a felhagyott szennyezett területek kármentesítését | Bővített cél: Magyarországon azokra a területekre is vonatkozik, ahol még fennáll a tevékenység, de a feladat műszaki szempontból ugyanaz.
5 | Hosszirányú áltjárhatóság helyreállítása, duzzasztás csökkentése | Az intézkedés két fontos eleme, egymástól
<table>
<thead>
<tr>
<th>Kód</th>
<th>Az intézkedés célja</th>
<th>Megjegyzés</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A hidromorfológiai viszonyok javítása, a hosszirányú átjárhatóságon kívül</td>
<td>függetlenül is alkalmazható.</td>
</tr>
<tr>
<td>7</td>
<td>A vízjárási viszonyok javítása illetve az ökológiai kisvíz helyreállítása</td>
<td>A KTM7 EU kulcsintézkedésen belül cél szerű külön csoportként kezelni a vízkivételekből, vízátvezetésekből adódó ökológiai problémák kezelését (a tipuserhelés is más).</td>
</tr>
<tr>
<td>7a</td>
<td>Ökológiai szempontok érvényesítése a fenntartható vízhasználatok megvalósításában.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A víz hatékony felhasználását elősegítő műszaki intézkedések, az öntözés, az ipar, az energiatermelés és a háztartás területén</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vízár politikai intézkedések a költségmegtérülés alkalmazása érdekében a lakossági vízi szolgáltatás területén</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Vízár politikai intézkedések a költségmegtérülés alkalmazása érdekében a ipari vízi szolgáltatás területén</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Vízár politikai intézkedések a költségmegtérülés alkalmazása érdekében a mezőgazdasági vízi szolgáltatás területén</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Tanácsadó szolgáltatás a mezőgazdaság részére</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>IVóvízbázisok védelmét szolgáló intézkedések (védtériületek, pufferzónák)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Kutatás, tudásbázis fejlesztés a bizonytalanság csökkentése érdekében</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Elsőségesi veszélyes anyagok kibocsátásának megszüntetése és elsőségesi anyagok kibocsátásának csökkentése</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Ipari szennyvízelszítők korszerűsítése, bővítése</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Talajerózióból és/vagy felszíni lefolyásból származó hordalék- és szennyezőanyagterhelés csökkentése</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Invazív, tájidegen fajok és betegségek terjedésének megelőzése és szabályozása</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>A rekreáció (beleértve a horgászatot is) káros hatásainak megelőzése és szabályozása</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A halászat és egyéb olyan tevékenységek káros hatásainak megelőzése és szabályozása, amelyek állatok és növények eltávolításával járnak</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Településekről, épített infrastruktúrákról és közlekedésből származó szennyezések megelőzése és szabályozása</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Erdészeti tevékenységből eredő szennyezés megelőzése és szabályozása</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>A természetes vízvisszatartást elősegítő intézkedések</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A savasodás ellen előidőben szolgáló intézkedések</td>
<td>Magyarországon nem jelentős probléma</td>
</tr>
<tr>
<td>26</td>
<td>Hal gazdasági hasznosítás káros hatásainak megelőzése és szabályozása</td>
<td>A halászat szabályozása, a jó gyakorlatok elősegítése kiemelt fontosságú. A KTM20 a biológiai hatásokkal foglalkozik.</td>
</tr>
</tbody>
</table>

8. fejezet Intézkedési program
<table>
<thead>
<tr>
<th>Kód</th>
<th>Az intézkedés célja</th>
<th>Megjegyzés</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Termálvizek kezelése a vízfolyásokba történő bevezetés előtt</td>
<td>Speciális problémákat vet fel, nehezen sorolható az egyéb pontszerű bevezetéseket kezelő intézkedési csoportokba</td>
</tr>
<tr>
<td>28</td>
<td>Hűtővizek felszíni vízbe történő bevezetésének szabályozása</td>
<td>Lásd előző magyarázat</td>
</tr>
<tr>
<td>29</td>
<td>Mezőgazdasági telepekől (állattartásból) származó terhelés csökkentése</td>
<td>Célszerű külön intézkedési csoportban, az ipari szennyvizektől külön kezeli</td>
</tr>
<tr>
<td>30</td>
<td>Hordalék- és tápanyag-visszatartás felszíni befogadókba történő bevezetés előtt</td>
<td>Elválasztott rendszerű csatornákból és belvízcsatornákból származó szennyezések rövid távú hatékonyság csökkentésére</td>
</tr>
<tr>
<td>31</td>
<td>Beszivárogatás, visszasajtolás korszerűsítése, szabályozása</td>
<td>Alapintézkedés, amely csak erőltetetten sorolható a 15-ös KTM-be</td>
</tr>
<tr>
<td>32</td>
<td>Nem vízigények kielégítését szolgáló felszín alatti vízelvonások szabályozása, a hatások enyhítése</td>
<td>A felszín alatti vizek mennyiségi állapotát befolyásoló ún. közvetett vízkivételkeke lépések miatt indokolt, amely egyrészt szabályozást, másrészt kompenzációs beavatkozást is szükséges</td>
</tr>
<tr>
<td>33</td>
<td>Károsodott vízi és vizes és szárazföldi élőhelyek védelme a vízjárást befolyásoló hatásokkal szemben, az egyéb intézkedéseken felül</td>
<td>A VGT1-ben hangsúlyos intézkedési csomag volt, megtartása indokolt</td>
</tr>
<tr>
<td>34</td>
<td>Károsodott vízi és vizes és szárazföldi élőhelyek védelme vízminőségi hatásokkal szemben, az egyéb intézkedéseken felül</td>
<td>A VGT1-ben hangsúlyos intézkedési csomag volt, megtartása indokolt</td>
</tr>
<tr>
<td>35</td>
<td>Fürdőhelyek védelmét biztosító speciális intézkedések</td>
<td>Speciális, különböző szempontokat összehangoló intézkedési csomag, amit célszerű külön kezeli</td>
</tr>
<tr>
<td>36</td>
<td>Szakszerűtlenül kiképzett kutak ellenőrzése, rekonstrukciója, felszámolása</td>
<td>A VGT1-ben fontosnak tartott probléma, ami nem oldódott meg</td>
</tr>
<tr>
<td>37</td>
<td>Balastból származó szennyezések megelőzése</td>
<td>A KTM4 kulcsintézkedési csomag a bekövetkezett szennyezések felszámolására enyhítésére fokusztól, a megelőzés és a haváriak kezelésére történő felkészülés szintén kiemelt jelentőségű</td>
</tr>
</tbody>
</table>

A nemzeti, illetve részvízgyűjtő szintű tervezéshez a definiált intézkedési csomagok önmagukban túlzottan átfogóak. Céljuk a tervek összehasonlíthatóságára és a VKI végezhetőségének az EU szintű értékeléséhez szükséges információ biztosítása. Az EU útmutató is rögztí, hogy az egyes intézkedési csomagokat a tagállamok töltik fel nemzeti (illetve tervezési egység) szintű specifikus intézkedésekkel, a továbbiakban intézkedésekkel. (Azért javasoljuk az egyszerű elnevezés megtartását, mert ez az a szint, amelyre a VKI „intézkedés” definíciója vonatkozik.) Kevés olyan intézkedési csomag van, amely önmagában lefedi annak a problémának a megoldását, amelyhez hozzárendelték/hozzárendeltük.
Az intézkedési program tervezésének egyik fontos alapozó lépése az intézkedési csomagoknak és az intézkedéseknek a terhelés típusokhoz rendelése. A tervezés az előző fejezetben felsorolt szempontok szerint történt, a hazai sajátosságok figyelembevételével.

A terhelés – intézkedés kapcsolat teljes táblázata, valamint a felhasznált háttér információk a 8-3 mellékletben találhatók.

A 8-3 melléklet az intézkedéseket a terhelések fő csoportjai szerint mutatja be:

- Pontszerű szennyezések
- Diffúz szennyezések
- Morfológiai elváltozások
- Vízkivételek és vízjárás
- Ivóvíz
- Védett természeti területek és fürdésre kijelölt vizek

A táblázatban az egyes terhelés típusokhoz megjelennek az érintett víz kategóriák, a releváns intézkedési csomagok, majd ezek összetevői: kötelező alapintézkedés, további alapintézkedés és kiegészítő intézkedés bontásban. Továbbá megadtuk: kötelező intézkedés esetén a kapcsolódó irányelvet, további alapintézkedés esetében a VKI szerinti intézkedéscsoportot (b – g), míg kiegészítő intézkedés esetében a funkcionális csoportot (K11 – K16).

A táblázat utolsó oszlopában megjelenik, hogy a VGT1-ben melyik az azonos vagy hasonló intézkedés.

8.3 A VGT2 tervezett intézkedései

8.3.1 Intézkedési adatlapok, jó gyakorlatok, K+F feladatok

Az intézkedések 8. fejezetben bemutatott struktúrája megfelel az EU jelentési útmutatójában megadott követelményeknek. A VGT1-ben alkalmazott intézkedések csatolásával bizonyos folytonosság is biztosítható.

Az intézkedéseket tovább bontottuk négy intézkedési elemre, amelyek már konkrét beavatkozásokat jelentik. Ezek szabályozási, gazdasági ösztönzők és pénzügyi eszközök, egyéb nem szerkezeti, végül műszaki elemei. Egy intézkedés többféle típusú elemet is tartalmazhat, de az is előfordulhat, hogy egyetlen elemből áll. Az intézkedési csomagok tartalma tehát a következő:

- Az egyes csomagokba tartozó intézkedések (alap, további alap, kiegészítő)
- Egyes intézkedések intézkedési elemei (szabályozás, gazdasági szabályozók-pénzügyi eszközök, nem-szerkezeti, műszaki)

Az OVGT 8-4 mellékletben található a VGT2 intézkedéseinek komplex, részletes bemutatása adatlapok segítségével. Az intézkedések kódja összefoglaló excel táblázat és részletes adatlapok készültek, a következő kötött tartalommal:

- intézkedés kódja
- az intézkedés elnevezése
az intézkedés kategóriája (alap, további alap, kiegészítő)
az alkalmazás szintje (nemzeti, vízgyűjtő, részvízgyűjtő, víztest, helyi)
érzintett víz kategória (vízfolyás, állóvíz, felszín alatti víz)
hasonló intézkedés a VGT1-ben
szabályozási intézkedési elemek leírása (kapcsolódó hazai jogszabályok, szabályozás módosítási javaslat)
gazdasági ösztönzők leírása
pénzügyi eszközök
egyéb "nem szerkezeti" intézkedési elemek leírása
műszaki intézkedési elemek leírása (jó gyakorlatok)
 intézkedés hat: hajtóerőre hat, terhelés csökkentő, állapotjavító, hatáscsökkentő
 intézkedés indikátorai (kötelező, javasolt, indoklás)
a sikeres végrehajtás feltételei, illetve várható problémák a végrehajtásban
az intézkedés végrehajtásáért felelős intézmény, Az intézkedés végrehajtásában potenciálisan közreműködő szervezetek, társadalmi csoportok
a költségek legfontosabb jellemzői
a finanszírozás forrása és rendelkezésre állása
járulékos hatások (a természeti erőforrásokra, természeti környezetre, gazdaságra, társadalomra, fenntartható fejlődésre.)

A gazdasági ösztönzők közül a legfontosabbak a KTM-ként is szereplő vízárpolitikai intézkedések a költségmegtérülés alkalmazása érdekében, amelyekről részletes koncepció és előterjesztés készült (OVGT 8-5 melléklet). A műszaki intézkedési elemek leírása általában a jó gyakorlatokat tartalmazza, de van olyan intézkedés, amelyről külön részletes jó gyakorlat útmutató készült. Mindezen részletes dokumentumokra az intézkedési adatlapok is hivatkoznak. A már elkészült jó gyakorlat útmutatók a következők:

- **OVGT 8-2 melléklet:** Hidromorfológiai jó gyakorlatok (nemzetközi és hazai jó gyakorlatok)
- **OVGT 8-6 melléklet:** Települési csapadékvíz gazdálkodás útmutató, a jó gyakorlat
- **OVGT 8-7 melléklet:** Településszintű, programszerű szennyvízkezelés kistelepüléseken
- **OVGT 8-13 melléklet:** Természetvédelmi intézkedések és jó gyakorlatok

A KEOP-ból finanszírozott VGT hidromorfológiai intézkedést (is) tartalmazó VIZIG-es projektek végignézve kiválasztottuk a sokkal kisebb számú, a későbbiekben feltételezésünk szerint is jó hidromorfológiai gyakorlatként példaként szolgáló projekteket, amit az **OVGT 8-2 melléklet** mutat be. A vízfolyásokra vonatkozó hidromorfológiai projektek, illetve projektelemek a jó gyakorlat körébe tartoznak, ha

- Elengedhetetlen kedvezőttlen hidromorfológiai beavatkozás esetén azt ellensúlyozza egy másik beavatkozás oly módon, hogy a hidromorfológiai állapotértékelésnél alkalmazott
adott kategória pontszáma nem romlik vagy az összesített hidromorfológiai állapot javul és ezt a későbbiek során az ökológiai állapot alakulása is igazolja.

- Azoknál a beavatkozásoknál, melyek kedvező vagy kedvezőtlen hatásúak is lehetnek a tervezés során már figyelembe veszik az ökológia szempontokat is, a kedvező hatás elérésére alkalmas megvalósítási mód alkalmazására törekednek.

- Kedvező hatású beavatkozás esetén az érintett hidromorfológiai állapot javul és ezt a későbbiekben az ökológiai állapot alakulása is igazolja.

- Több típusú beavatkozás alkalmazása esetén az összesített hidromorfológiai állapot javul.

A megvalósult projektek jelentős részénél még nem áll rendelkezésre olyan hosszabb időtartamú vizsgálat, mely választ adhatna a hatékonyság kérdésére és valóban bizonyítani feltételezéseinket, előzetes várakozásainkat. Ennek feltétele azonban olyan nyomonkövetési monitoring kidolgozása és alkalmazása, mely nagy valószínűséggel választ ad a hatékonysági kérdésekre. A vízügy szakembereink feladata a kapott eredmények értékelése, az ok-okozat összefüggések feltárása. A következő tervezési időszakra javasoljuk a hidromorfológiai projektek eredményeinek értékelésére alkalmas indikátor rendszer kidolgozását.

Az **OVGT 8-2 melléklet** a nemzetközi hidromorfológiai jó gyakorlatokat is bemutatja.

A **OVGT 8-13 melléklet** tartalmazza azokat a természetvédelmi (zömében Nemzeti Parkok által megvalósított) projekteket is, amelyek a VKI szempontból jó gyakorlatként ajánlhatók.

Kutatás-fejlesztés, felmérések

Legnagyobb sekély tavunk jó ökológiai állapotát annak köszönhetjük, hogy a Balaton kutatás évtizedekre visszanyúlóan kiemelt jelentőséget kapott a döntések előkészítésében. A vízminőség javító beavatkozások tervezésének szerves része a tó és vízgyűjtő folyamatainak megismerésére, a változások nyomon követésére és a beavatkozások hatáselemzésére irányuló kutatás-fejlesztési munka.

Sajnos ezek a kutatások az utóbbi években háttérbe szorultak. Annak érdekében, hogy a Balaton jó állapotát meg tudjuk őrizni, hosszabb távon további javulást tudjunk elérni, szükség van a Balatoni K+F folytatására, az abbanmaradt vizsgálatok újraindítására, többek között az alábbiakra:

- A Kis-Balaton vízvédelmi rendszer működésének nyomon követése: a KBVR II. ütemének befejezése esetén a tó tározóter méretének növelése lehetőséget nyújtott, ami a költség hatékony megoldását biztosította.

- A Balaton vízgyűjtőt megkezdett egyedi szennyvíz program tapasztalatainak értékelése: az országban elsőként valósult meg több kistelepülésen az egyedi (házi) szennyvíziszló berendezések programszmiről telepítése. A beruházások folytatásához szükséges a tapasztalatok összegzése, ennek figyelembe van a környezetvédelmi és közegészségügyi kritériumoknak eleget tevő, de hosszú távon biztonságosan üzemeltethető, költség hatékonynak megoldások valósuljanak meg.

- A tóba jutó tápanyagterhelés megismerése és változásának nyomon követése: a Balaton tápanyagterhelésének meghatározását célzó kutatások a mérésekkel együtt a 2000-es évek elején abbanmaradtak. Ennek hiányában a tó vízminőségében, trofitású állapotában
bekövetkezett változások nem magyarázhatók és a várható változások előrejelzésének lehetősége is megszűnik. A befolyókra, a tápanyagterhelés forrásaira (különös tekintettel az eróziós és belterületi lefolyással közvetített terhelésekre) irányuló monitoring tevékenységet és az arra építkező kutatásokat sürgősen újra kell indítani, hiszen ez teszi lehetővé az összes, a külső terhelés csökkentésére irányuló intézkedés hatékonyságának elemzését és a vízminőség hosszú távú alakulását befolyásoló hatások tervezését.

8.3.2 Felszíni vizek fizikó-kémiai állapotát javító intézkedések

Az ökológiai állapot meghatározható háttér kémiai terhelés, az oxigéntartási kapacitás és a terhelés meghatározását okozó hő és sóterhelés van hatással. Ezeket, vagyis a felszíni vizek fizikai és kémiai elváltozását okozó terheléseit a 3.1 fejezet ismertette. Az ökológia minősítés részét képező fizikai és kémiai paraméterek szerinti minősítés eredményét a 6.1 fejezet tartalmazza. Az intézkedések tervezése a DPSIR logikája mentén a terhelések hatáselemzésére támaszkodik, melynek eredményeként meghatározásra kerültek a jelentős hatást okozó terhelések. Az intézkedések feladata a jelentős terhelések megszüntetése, vagy legalább mérsékeltése olyan mértékben, hogy a víztestek állapotára vonatkozó célkitűzések elérhetők legyenek. Az intézkedések műszaki és szabályozási elemekre is vannak, melyek különböző szintű alkalmazása vezet a vizek állapotának javításához. Jelen fejezet a tervezés módszerét és eredményét ismerteti, elsősorban azokra az intézkedési elemekre vonatkozóan, melyeknek víztest szintű meghatározhatóságát lehetséges volt. Az intézkedések műszaki tartalmának és az országos terv 8-4 mellékleteiben megadott intézkedési adatlapok tartalmazzák. A fizikai és kémiai jellemzőkhöz tartozó növényi tápanyagok az ökológia vízminőség meghatározó elemeként a Balaton vízgyűjtőn kiemelt fontossággal bírnak. A részvízgyűjtő központi víztestjének, az ország nemzeti jelentőségű állóvízének vízminőség javításáért tett múltbeli erőfeszítések is elsősorban a tápanyagterhelés szabályozására irányultak és hoztak eredményes változást a Balaton eutrofizációja terén.
8.3.2.1 Kommunális szennyvízbevezetések ből származó szerves anyag és tápanyagterhelés csökkentése

Jelentős terhelések meghatározása

A vizek terhelését nézve a települési csatornahálózatok jelentős környezeti terhelést szűntetnek meg azáltal, hogy a felszín alatti vizek szennyvízet származó közvetlen vagy közvetett szennyezését megakadályozzák. Ugyanakkor a hálózatok végeznek pontforrás ként terheli a befogadó felszíni vizeket. Annak érdekében tehát, hogy mind a felszíni, mind a felszín alatti vizek terhelését minimalizáljuk, az összegyűjtött szennyvizek csak megfelelő tisztítás után vezethetők a befogadókba. A szükséges tisztítás mértékét a Városi szennyvíz direktiva és a hazai emissziós rendelet (28/2004 KVVM) ennek megfeleltetett technológiai határértékei megadják. Azonban lényeges, hogy ez a követelmény szükséges, de minden esetben elégséges feltétele annak, hogy a tisztított szennyvíz bevezetése ne okozzon olyan terhelést a befogadó élővíz számára, mely az ökológiai jó állapot elérését megakadályozza. Az élővizek terhelhetősége (más szóval terheléssel szembeni érzékenysége) nem egyforma, azt számos tényező, mindenek előtt a mederbeli vízhozam (hígító kapacitás), a bevezetési pont feletti háttérterhelések, és a bevezetett anyag tulajdonságai, lebomló képessége befolyásolja. A szükséges tisztítást tehát mindezek figyelembe vételével, a tényleges terhelhetőségi szint megállapításával lehet meghatároznii.

A pontforrások így összesen (közvetlenül vagy közvetve) 22 felszíni víztestbe vezetik a tisztított szennyvizeket (a Balatonba közvetlenül két helyen történik tisztított szennyvíz bevezetés, a Révfülői szennyvíztelepről és Zánkai Ifjúsági Centrum szennyvíztisztítójából). A többi szennyvízbevezetés a Zalán és a mellékvízfolyásokon keresztül érheti el a Balatont. Kivételt képez a Keszthelyi szennyvíztelep, melynek tisztított szennyvize nem kerül közvetlenül élővízbe, csak jelentős csapadékos - belvizes időszakban juthat belvíztemeléssel a Kis-Balaton tározóterébe.

A hatáselemzés a 3.1 fejezetben ismertetett QUAL-2 típusú vízminőségi modelllel történt. A számítási algoritmus a mederbeli lefolyás mentén, az utazási idő függvényében számítja a szennyezőanyagok koncentrációjának változását. A modell a teljes vízfolyás víztest hálózatra és a folyóvizekkel kapcsolatban lévő állóvizekre (tározókra) is kiterjed. A kommunális szennyvízbevezetések mellett a közvetlen ipari szennyvízkibocsátásokból származó szervesanyag és tápanyagterhelés is számításba lett véve. A részben mérési adatokra kalibrált, részben irodalmi értékeken alapuló „default” paraméter beállításokkal végzett modellfutattások az átlagos viszonyokra jellemző középvízi vízhozamokra történtek, melyben a számított koncentrációk az éves átlagok reprezentálják. A számított koncentrációk a bevezetett szennyvizek vízminőségi hatását mutatják, tartalmazva a felvízi (átadódó) és közvetlen terhelés(ek) addicionális hatását a lebomlással korrigálva. A koncentrációk minden víztest esetében egy reprezentatív pontra lettek kiszámítva. Ez a pont a legalisó, kifolyási szelvény, melyben a célállapot teljesülésére vonatkozó feltétel megadható. Ezt a feltételezés a jól állapot határáértéke és a természetes háttérérték különböztete, vagyis az antropogén terhelésből megengedhető koncentráció növekmény jelenti.

A modellszámítás 4 komponensre (KOI, BOI, összes N és összes P) történt. A számított koncentrációkat víztestenként a célértékekkel összevetve, ahol egy víztestben valamely komponensre magasabb érték adódott, a hatást jelentős. A végső besoroláshoz az állapotértékelés eredménye is figyelembe lett véve: ha a modellszámítás határáérték túllépést eredményezett a mérések nem támasztották alá, akkor a hatást nem tekintettük jelentősnek. Az eredmények szerint a kommunális és ipari szennyvízbevezetések csupán 3 víztesten okoztak olyan mértékű terhelést, ami a vízminőségi jó állapot elérést akadályozza. Ezek tehát a szennyvízbevezetések miatt kockázatos víztestek. A Sári-csatornát a Marcali szennyvíztelep, a Gyöngyös-folyást és az Egyesített övcsatornát Keszthely szennyvíztelepe terheli.

Potenciálisan minden kibocsátás jelentős, melynek befogadója szennyvízbevezetés miatt kockázatos. Valójában azonban csak azok, melyek önmagukban is jelentősek, azaz a felvízi hatások és a víztestbe vezetett esetleges más szennyező források nélkül is olyan terhelést okoznak, mely a befogadóban a vízminőségi célkitűzést akadályozza. Fontos minősítést azok a bevezetések kaptak, melyek más terhelésekenként együtt már jelentős hatásuk.

A vízgyűjtő 33 meglévő és 1 új kommunális szennyvíztisztítójából 2 kibocsátása bizonyult jelentősnek, további 10 fontosnak. A jelentős és fontos terheléseket, valamint a hatásuk miatt kockázatos víztesteket a 8.2 ábra mutatja. A terhelések hatás szerinti besorolását a 2012-es kibocsátási állapotra a 3.1.1 fejezet 3-1 melléklete is tartalmazta.
Kommunális szennyvízbevezetéseket érintő intézkedések tervezése

A kommunális szennyvízbevezetésekre vonatkozó intézkedés az „1. Szennyvíztisztító telepek építése és korszerűsítése”, a Reporting Guidance első számú kulcsintékedése. Az intézkedés öt alintézkedési elemet tartalmaz:

1.1 A Szennyvíz Program megvalósítása, új szennyvíztisztító telep létestése, meglévő szennyvíztisztító telepek korszerűsítése (rekonstrukció, kapacitás növelés, technológia fejlesztés), a felszíni befogadóra vonatkozó határértékek betartásával.

1.2 Azonos céljú, mint 1.1, de a Szennyvíz Programban jelenleg nem szereplő agglomerációkra.

1.3 Alternatív szennyvíz elhelyezési mód (pl. tisztított szennyvíz nyárfás elhelyezése, átvezetés másik befogadóba), a befogadó felszín alatti vagy felszíni víztest jó állapotának veszélyeztetése nélkül.

1.4 A szennyvíztisztító telep záportároló kapacitásának növelése, a kezelési technológia fejlesztése.

1.5 Csapadékvíz szennyvízcsatornára történő rákötéseinek csökkentése, különösen a felszín alatti víz szempontjából fokozottan érzékeny területeken.

Az 1.1 tehát alapintézkedés, mely a 91/271 EEC szerinti, a Városi szennyvíz irányelvben meghatározott követelményekkel összhangban a Szennyvíz program megvalósítását jelenti. Teljesítési határideje 2015. A Balaton vízgyűjtőn, tápanyag érzékeny terület révén, a határidő a 10 000 LE feletti agglomerációkra 2008 volt. A szennyvíz program befelévezését célzó beruházások az előző VGT készítésétől számított tervezési időszakban az új szennyvíztisztító telepek építése
mellett jelentős számú telepen kapacitás bővítést eredményeztek. Ezeknél a beruházásoknál rekonstrukció is megvalósult, sok telepen átépítésre került a korábbi, elavult technológia és az engedélyezési folyamat során az elfolyó vízminőségi határérték is szigorodtak.

Ezért a 2009-2015 közti szennyvíztelepi fejlesztéseknel annak ellenére, hogy az új engedélyezési folyamat során az elfolyó vízminőségi határértékek felülvizsgálata megtörtént, nem minden esetben történt meg a VKI célkitűzésének teljesítéséhez szükséges határérték szigorítás azoknál a szennyvíztelepeknél, melyek a bővítés előtt vagy azt követő állapotukban a befogadó víztestre jelentős terhelésként hatnak.

Az 1.1 intézkedés részeként a „pontszerű szennyezőforrásokból származó közvetlen és közvetett bevezetések szabályozása” az intézkedés szabályozási elemeként a határérték megállapításra vonatkozó szabályozás módosítását jelenti, mely az emissziós és immissziós határértékek összehangolását és egyben a meglévő határértékek felülvizsgálatát is magában foglalja. Az intézkedés részeként készül el a terhelhetőségi vizsgálatok elvégzésének gyakorlati útmutatásait tartalmazó útmutató. Azokat a szennyvízkibocsátókat, melyeknél a befogadó jó állapotának elérése miatt – a fentiekben ismertetett terhelés hatás elemzés eredményeként - határérték szigorítás szükséges, a terv – mint az 1.1-hez tartozó további alapintézkedés – megjegelni (8-8 melléklet kibocsátásonkénti intézkedéseket tartalmazó munkalapja). Megjegyezzük, hogy az esetek döntő többségében a határérték szigorítás a P kibocsátásra vonatkozik.

Az országosan alkalmazott joggyakorlathoz képest a Balaton vízgyűjtőn egységesebb szabályozást eredményezett a területi határértékek kötelező alkalmazása, melynek köszönhetően a működő telepek többségénél az engedélyezett kibocsátás ezeken a határértékeken alapul.

Az 1.1. intézkedés megvalósításának, mint alapintézkedés, a finanszírozási forrása is biztosított. A 2015-ig lezajlott beruházások a KEOP forrásokból, a 2015 utáni időszakra átnyúló fejlesztések a KEHOP forrásokból finanszírozhatók. A KEOP projektek keretében megvalósult fejlesztéseknek a kaposlódi projekt száma a 8-8 mellékletben megjelölésre került. Abban az esetben, ha a beruházó a megvalósításra már elfogadott KEHOP pályázattal rendelkezik, a tervben az intézkedéssel érintett szennyvíztisztító telepelnél a „KEHOP projekt” megjelölést tettük. A még elfogadott pályázattal nem rendelkező, de a 25/2002 Kormányrendelet szerint a Szennyvíz program keretei köztt megvalósítandó szennyvíztelepi fejlesztéseknél a „25/2002 kr. szerinti
kötelezettség, nincs elf. projekt” megjelölés látható. A KEOP projektek 2015-ig befejeződnek, a KEHOP (illetve leendő KEOP) projektek esetében a megvalósítási határidő 2021. Az intézkedéseket a 8-8 melléklet víztestenkénti összesítésben is megadja. Tekintettel arra, hogy mint jeleztük, az alapintézkedésként végrehajtott szennyvíztelep fejlesztések esetében nem minden esetben történt meg a befogadó VKI szerinti célkitűzésének eléréséhez szükséges határérték szigorítás, ennek szükségességét, mint további alapintézkedés, az összesítőben „1.1 (hé. szig)” beírás mutatja. A további alapintézkedés szükségesége a megvalósítási tervezett időpontját késleltetheti, különösen azoknál, melyek már megvalósultak vagy ha a beruházás már engedélyesett tervevel rendelkezik. Ez leginkább a KEOP projekteként érinti, így ennek okán a határidők 2015-ről 2021-re, esetenként 2027-re módosultak. A megvalósítás lehetséges határideje attól is függ, hogy a szennyvíztisztító telep képes-e egy szigorúbb határérték teljesítésére az üzemeltetés módosításával (például a vegyszeradagolás emelésével az elfolyó P koncentrációra szigorúbb határérték tartható), vagy további beruházást igénylő fejlesztés szükséges.

A szennyvíz kibocsátásonként meghatározott 1.1 szerinti intézkedések a Balaton részvízgyűjtőn az alábbiak:

- Szennyvíztelep fejlesztés (új telep és/vagy bővítés és rekonstrukció) 6 KEOP projekt keretében valósult meg, ezen 2015-re befejeződtek. A beruházások egy jelentős (Marcali szennyvíztelep) és 3 fontos kibocsátást érintenek (Keszthely, Révfülöp és Zalaegerszeg szennyvíztisztítói). A KEOP-os beruházásból épülő (épült) telepek közül a jelentős terhelést okozó Marcali szennyvíztisztítónál van szükség további alapintézkedésként P határérték szigorításra.

Az 1.2 alintézkedési elem tartalmában megegyezik az 1.1-ben megadottakkal, azonban csak azokra a szennyvíztelepekre vonatkozik, melyek nem a Szennyvíz program keretei közt valósultak vagy valósulnak meg. Ilyen értelemben ez az intézkedés is a további alapintézkedések kategóriájába tartozik. Azoknak a 2000 LE-nél kisebb lélekszámú településeken a megvalósult, vagy megvalósítás alatt lévő szennyvíztelepelei sorolhatók ide, melyek nem képezik a 25/2002 kr-ben rögztetett szennyvíz agglomerációik részét. Ezeken a településeken a szennyvizek tisztításának és elhelyezésének többféle megoldása lehetséges. Abban az esetben, ha csatornahálózat és az összegyűjtött szennyvíz tisztítására önálló szennyvíztelep épül, terhelés szempontjából új pontszerű kibocsátás jön létre. További alternatíva az egyedi, vagy decentralizált szennyvíz tisztítás és elhelyezés – lásd a 21.7 intézkedést, mely a Balaton törvény által megteremtett Balatoni egyedi szennyvíz program (BKSZP) keretében a vízgyűjtőn részben meg is valósult, program szerűen telepített egyedi kisberendezések település szintű alkalmazásával.

Az 1.2 intézkedések megvalósítása a regionális operatív programokból történt finanszírozással általában a hagyományos, centralizált megoldáshoz vezetett (csatornahálózat és központi szennyvíztelep). A szennyvíztelepek befogadói ebben a kategóriában többségében felszíni vizek, a kibocsátás tehát a felszíni vizek vízminőségére való hatás alapján ítélhető meg, és a tisztítási követelményekre vonatkozó szabályozásánál is ezt kell figyelembe venni.

A vízgyűjtőn 44 település nem tartozik a Szennyvíz Program alá, ebből:

- 11 településen gyűjtőhálózat üzemel,
- 5 településen ROP keretében valósul meg a beruházás (Balatonhenye, Köveskál, Mindszentkálla, Monoszló, Szentbékkálla). A Köveskáli telep a Burnót-patak terhelése miatt fontos besorolást kapott a hatáselemzés során,
- 8 településen megvalósult a beruházás a Balatoni Kistelepülések Szennyvízkezelési Programjának keretében (Gétye, Nyim, Óbudavár, Balatoncsicsó, Dióskál, Szentjakabfa, Tagyon, Salföld),
- További 20 település szennyvíztisztítása és elhelyezése a BKSZP keretében 2018-ra valósítandó meg.

Az 1.3 alintézkedésben alternatív szennyvíz elhelyezési módként definiált kiegészítő intézkedésekre abban az esetben van szükség, ha 1.1 vagy 1.2 intézkedés nem elegendő, a kibocsátás ezek megvalósítása után is még olyan mértékű marad, hogy a befogadó víztestben a VKI szerinti célkitűzés előrelépéssel akadályozza. Az intézkedés többféle megoldást takar: utótisztítást, átvezetést vagy talajba szikkasztást, stb. A megoldások kiválasztása további részletes műszaki és gazdasági elemzéseket igényel. A 8-8 melléklelet csak a potenciálisan szóba jöhető megoldás típusokat adjja meg. Az elemzésben az is vizsgálandó, hogy a megvalósítás költsége nem vezet-e olyan mértékű társadalmi teherhez, mely indokoltá tárgyalására előírt környezeti célkitűzés módosítását (jelentős szennyezőanyag terhelés miatt gyengébb célkitűzés).

Az 1.4 szerinti intézkedési elem az egyesített rendszerű csatornahálózatokkal működő szennyvíztisztítókra, illetve a hálózathoz tartozó záporkömlőkről vonatkozik. Tartalmazza a szennyvíztisztító telepi záporlárokkak kapacitásának növelését és a szükség esetén technológia fejlesztéseket valamint a záporkömlőkből származó terhelés minimalizálását pl. csatornahálózati lefolyás-szabályozással. Magyarországon mintegy 50 településen üzemel egyesített csatornahálózat az elvezető rendszer részeként. Jelentősebb arányt az elválasztott rendszerű csatornák csak a nagyvárosi rendszerekben képviselnek.

Ismert, hogy a csatornahálózatokban megjelenik többlet vizek (melyekhez többlet terhelés is társul) nem csak az egyesített rendszerekben igényelnek intézkedést. Az elválasztott csatornahálózatokat üzemeltetők nagy többségét érinti a hálózatokban megjelenő „idegen vizetek” okozta probléma, mely egyrészt az illegális csapadékvíz bekötésekből, másrészt az infiltrációval kerül az elvezető rendszerbe (utóbbi főként kivitelezési probléma és az újabban épült rendszereknél is sajátos módon jellemző). Ennek megoldását az elsősorban üzemeltetői oldalról jelentkező, a kommunális szennyvíztisztítók működését is befolyásoló probléma nagyarányú, szertágazó előfordulása miatt horizontális intézkedésként szükséges kezeli. Az intézkedési programban a csapadékvizekkel közvetített szennyezőanyag terhelés csökkentésére irányuló intézkedések között (21. számú kulcsintézkedés) szerepel.
A csatornahálózatok építésével, illetve minden, a felszín alatti vizeket érintő települési intézkedéssel (beleértve az egyedi szennyvízelhelyezést, az idegenvizekből származó terhelést, és természetesen azokat a szennyvíztelepeket, melyek befogadója felszín alatti víz) a felszín alatti vizek jó állapotát biztosító intézkedések között szerepel a tervben.

A szennyvíztelepekre vonatkozó intézkedések hatása a szerves- és tápanyagterhelésre

Az 1.1 – 1.3 intézkedések hatását indikátorként a felszíni vizek fizikai-kémiai állapota szempontjából a víztestekbe vezetett terhelés változása mutatja. Ehhez szükség volt kibocsátásonként a terhelés jövőbeli értékének előrejelzésére.

A terhelés becslés során a kibocsátás szabályozását érintő, a szabályozási intézkedések részét képező változtatások („A technológiai határértékek felülvizsgálata és az elfolyó vízminőségi határértékek megállapításának a befogadó terhelhetőségének meghatározásán alapuló szabályozása”) már figyelembe lettek véve. Ennek megfelelően, a szennyvíztelepek elfolyó vízminőségének meghatározása a telep méretének függvényében a 8.10 táblázatban megadott új határértékek alapján történt. Új telepre (melyekre mérési adat még nincsen) a táblázat alapkövetelményként megadott értékek irányadóak. A meglévő telepeknél, melyek elfolyó vízminőségére múltbéli mérési adat rendelkezésre állt, a mért értékeket vettük alapul abban az esetben, ha ezek az értékek nem magasabbak az alapkövetelményként megadott értéknél. Ellenkező esetben a telep mérete a paraméterterhez tartozik, melyekre a teljes terhelés elemzés szerint határérték szigorítás szükséges, a BAT határértéket kell alkalmazni arra a paraméterre, melynek terhelése jelentős vagy fontos. A határérték szigorításokat a 8-8 melléklet szennyvíz kibocsátónkénti listája paraméterenként jelöli, továbbá a beírt intézkedések is jelzik (1.1 további alapintézkedés illetve „1.1 (he. szig)” a víztestenkénti összesítőben).

8-5. táblázat: Kommunális szennyvíztisztító telepek elvárható elfolyó vízminőségi követelményei: alap – elvárható érték (technológiai határérték), BAT: az elérhető legkisebb érték adott telepméret tartományban, mely a befogadó vízminőség védelme érdekében előírható

<table>
<thead>
<tr>
<th>LE szerinti kategória</th>
<th>BOI (mg/l) alap / BAT</th>
<th>KOI (mg/l) alap / BAT</th>
<th>ÖsszesN (mg/l) alap / BAT</th>
<th>ÖsszesP (mg/l) alap / BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 000</td>
<td>25 / 25</td>
<td>125 / 125</td>
<td>- / 50</td>
<td>- / 10 (2)</td>
</tr>
<tr>
<td>2 000 – 5 000</td>
<td>25 / 25</td>
<td>125 / 100</td>
<td>50 / 35</td>
<td>10 / 5 (0,7)*</td>
</tr>
<tr>
<td>5 000 – 10 000</td>
<td>25 / 15</td>
<td>125 / 75</td>
<td>50 / 25</td>
<td>5 / 1 (0,7)*</td>
</tr>
<tr>
<td>10 000 – 100 000</td>
<td>25 / 15</td>
<td>125 / 50</td>
<td>35 / 15</td>
<td>2 / 0,7</td>
</tr>
<tr>
<td>> 100 000</td>
<td>25 / 15</td>
<td>125 / 50</td>
<td>15 / 10</td>
<td>1 / 0,5</td>
</tr>
</tbody>
</table>

Balaton vízgyűjtőn érvényes területi határérték

A **8.10. táblázat a 3.1.1 fejezet**ben bemutatott 2010-2012 időszakra meghatározott kiinduló terhelési állapothoz képest mutatja a szennyvíztelepe intézkedések megvalósításának terhelés változásra gyakorolt, előirányzott hatását. Látható, hogy a szennyvíz mennyiségének továbbá kismértékű növekedése várható. Ez a növekedés a tisztított szennyvízzele közvetített terhelésben is jelentkezik, a foszforterhelés azonban csökken. Ez az új és már működő telepekre vonatkozó P határérték további szigorításának eredményeként érhető el, mely intézkedés elsősorban a Balaton, másodszorban a szennyvíztelepek közvetlen befogadó víztestjeinek védelmében szükséges.
8. fejezet

8-6. táblázat: Felszíni vizek közvetlen, kommunális szennyvízbevetésekből származó szennyezőanyag terhelés változása a 2010-12 évi alapállapot és a 2021-re tervezett állapot között

<table>
<thead>
<tr>
<th>Ország összesen</th>
<th>Szennyvíz-kibocsátás (db)</th>
<th>Kibocsátott szennyvíz (millió m³/év)</th>
<th>Éves kibocsátás (tonna/év)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BOI</td>
<td>KOI</td>
</tr>
<tr>
<td>2010-12</td>
<td>33</td>
<td>15</td>
<td>133</td>
</tr>
<tr>
<td>2021</td>
<td>34</td>
<td>16</td>
<td>137</td>
</tr>
<tr>
<td>Változás %</td>
<td>3%</td>
<td>7%</td>
<td>4</td>
</tr>
</tbody>
</table>

8.3.2.2 Közvetlen ipari szennyvízbevezetésekből származó terhelés csökkentése

A pontszerű ipari kibocsátásokat a 3.1.2 fejezet ismerteti. A nyilvántartott bevezetést jelentő közvetlen ipari kibocsátások listája és hatásuk szerinti besorolása a 3-1 melléklet második munkalapján található. A fizikai- és kémiai állapotra ható intézkedések tervezéséhez a közvetlen ipari bevezetésekkel származó szerves- és tápanyag, valamint a termálvíz használathoz kötődő hő- és sóterhelést szükséges számításba venni. Ennek eredményét az alábbiakban ismertetjük.

Közvetlen ipari kibocsátásból származó szerves- és tápanyagterhelés csökkentése

Az ipari szennyvízkibocsátásokra vonatkozó terhelés-hatás elemzés a kommunális szennyvízekkel együtt, a vízminőségi modellbe az ipari kibocsátásokra rendelkezésre álló BOI, KOI, összes N és összes P adatokat betáplálva a kommunális terhelésekkel azonos módon történt. A terhelési adatok és az elvégzett elemzés alapján az ismert és adattal rendelkező 28 kibocsátásból mindössze 3 kibocsátás igényel intézkedést (ezek közt két halászati tevékenységhoz kapcsolódó halastavi kibocsátás és egy termálfürdő bevezetése van). Az ipari kibocsátásokra tervezett intézkedéseket a 8-8 melléklet tartalmazza.

A kevés intézkedési igény az ipari bevezetések összes terhelésbeli alacsony részarányával magyarázható. megjegyezzük, hogy a valós kép e bemutatotthoz képest kedvezőtlenebb lehet, mert az ipari kibocsátások terhelés adatai sok esetben hiányosak, a komponensek között leggyakrabban csak a KOI-ra áll rendelkezésre megbízható adat.

Termálvíz felszíni vízbe vezetését érintő intézkedések

A termálvíz hasznosításhoz kapcsolódó terhelések az ipari kibocsátások közt kiemelendők a felszíni vizekre gyakorolt hatásaik tekintetében. A fürdőkhöz, valamint egyéb kommunális és mezőgazdasági használatok kötődő termálvíz használat a kibocsátott hőenergia, a használt termálvizek magas só és esetenként szervesanyag (fenol) tartalma jelentős terhelést okozhat a befogadó élővízben.

A termálvizekre vonatkozó terhelés-hatás elemzéssel és a szükséges intézkedések tervezésével az országos terv is külön foglalkozik. Az ipari kibocsátások között a Balaton részvízgyűjtőn is 18 termálvíz bevezetés lett nyilvántartásba véve, melyek összesen 8 víztestet terhelnek. A bevezetésekre vonatkozóan hatáselemzés készült, mely figyelembe veszi (i) a bevezetett termálvíz /befogadó vízhozamból számnitott hígulási arányát (a befogadóra mértékadó vízhozamnak a 66%-os tartósságú ún. leggyakoribb vízhozamot véve alapul); (ii) a bevezetés hőmérsékletét és sótartalmát; (iii) a befogadó víztest állapotát sótartalom szerint (a hőmérsékletre,
mint fizikai-kémiai paraméterre nem készült állapotértékelés). Az elemzés kritériumai az alábbiak voltak:

- Ha a Na% 90 feletti, eleve jelentős a termálvíz terhelés.
- Ha a hígulás 10 alatti, jelentős a termálvíz terhelés.
- Ha a hígulás 20 alatti, és a sótartalom alapján a víztest 4-es állapotú, jelentős a terhelés.
- Ha a víztest állapota jó, de a hígulás 50 alatti, lehet, hogy fontos a terhelés.
- Ha eleve jónál rosszabb a víztest sórá, akkor jelentős a terhelés.
- Ha a víztest sótartalma kíválló, és a hígulás jelentős, nem megy jó alá az állapot, a termálvíz terhelés nem jelentős.
- Ha nem ismert a hígulási arány, akkor a kategória "lehet, hogy fontos", határesetben úgy szintén.
- Ha nem ismert a Na%, akkor a besorolás a többi paraméter alapján történt.
- Ha a kumulált hatások alapján a fentiek valamelyike teljesül, a vonatkozó minősítést kapja a terhelés mértéke.

Az elemzés eredményeképpen a 18 termálvíz bevezetésből 2 minősült jelentősnek (mindkét bevezetés a Kiskomáromi csatornát terhelő Zalakarosi termálfürdő komplexumhoz tartozik). Ezek önmagukban is jelentős hatásúak, de gyakran egy víztesten több bevezetés együttes hatása eredményez állapotomlást a vízminőségben. További két fürdő (Marcali és Zalaegerszeg) esetében a bevezetésről további információk szükségesek a hatás eldöntéséhez, ami a befogadókat tekintve előirányzott monitoring intézkedéshez vezet.

A jelentős bevezetések estében az intézkedések a használatától függőek:

Amennyiben a használat energetikai céljú: 27.1 Energiatermelésre használt, elsőbbségi anyagot nem tartalmazó termálvizek kezelése és/vagy 31. Beszivárogtatás, visszasajtolás korszerűsítése, szabályozása.

Fürdővíz használat esetén (melynél kontakt vízhasználat miatt a visszasajtolás nem alkalmazható), a lehetséges megoldások a 27.2. Fürdésre és gyógyászatra használt termálvizek kezelése intézkedési elemben szerepelnek.

Az intézkedéseket a 8-8 melléklet termálvíz bevezetésekre vonatkozó munkalapja kibocsátásonként megadja.

8.3.2.3 Diffúz tápanyagterhelésből származó terhelés csökkentésére irányuló intézkedések

Vízgyűjtő terhelések hatáselemzése

A diffúz terhelés meghatározására közvetlen mérési lehetőség nincs. A vizeket különböző útvonalakon elérő terhelést méréseken alapuló modellezéssel lehet becsülni. A diffúz terhelés sajátossága annak változékony jellege, vagyis a vizekbe bejutó szennyezőanyagok mennyisége a transzport folyamatok mindenkori alakulásától függően változik. A terhelési modellek különböző tér- és időléptékben képesek a vízfolyásokba jutó anyagok sorsát lekötini, a számítások ellenőrzésére a folyókban mért anyagáramok szolgálnak. Tekintve, hogy a vizek terhelésének
jelentős hányada származik diffúz forrásokból, a vízminőség szabályozás-tervezés elengedhetetlen eszköze a modellezés.

A terhelések meghatározására a nemzetközileg elfogadott (a Duna vízgyűjtőjére is alkalmazott) MONERIS módszerrel történt. A terhelés számítása az ország egészére készült, a számítás térbeli egysége a víztest vízgyűjtő. Az eredmények 1078 víztest vízgyűjtőre (P, N és hordalék terhelés és a tápanyagterhelés forrásonkénti megoszlása) rendelkezésre állnak (lásd: 3.2 fejezet és 3-2 melléklet). A modellszámítások ellenőrzése a 2009-2012 évi vízminőségi monitoring adatokkal történt azokra a mérési pontokra, melyekre megbízható (legalább havi gyakoriságú mintavételezésből számított) vízminőségi adat és vízhozam mérés is rendelkezésre állt (országosan mintegy 200 pont). A MONERIS módszer előnye számos más modellezési megközelítéssel szemben, hogy a számítás tetszőleges térléptékben végezhető (természetesen a számítás pontosságát a térbeli adatok rendelkezésre állása jelentősen befolyásolja), az időbeliség azonban a modellben nem jelenik meg azáltal, hogy a számítás hosszabb időszak átlagát képezi (statikus modell). Ezáltal a természetes változékonyságból (pl. szélsőséges időjárású helyzetekből) adódó terhelésingadozások kiküszöbölhetők, az eredmények pedig az állapotértékelés vetítési alapját képező tervezési időszakot (2009-2012) fedik le.

A MONERIS modellből minden víztest vízgyűjtőjére rendelkezésre áll a N és P terhelés (kg/év), ami az adott víztestbe a vízgyűjtőterületről belép. A terhelések hatáselemzése során annak vizsgálata történt, hogy ezekből a terhelésekből milyen koncentráció lesz a víztestben és ez meghaladja-e a jó állapot kritériumaként definiált értéket. Amennyiben igen, a diffúz terhelés hatása jelentős. Az elemzés a pontoszéri terhelések hatáselemzésénél ismertettek QUAL vízminőségi modell volt. A jelentős hatások feltárásához a modell futtatását diffúz terhelés betáplálásával végeztük, a pontoszéri nélkül. Tehát a már kalibrált modellebe csak a diffúz terhelés került bevitelbe, melyek eredményként a számított koncentrációk csak a diffúz terhelés hatását mutatják. A modell bizonytalanságából származó számítási hibák miatt előfordult, hogy a modell határértéket meghaladó koncentrációt számlált, melyet a vízminőségi adatok (az állapotértékelés eredménye) nem találtak alá. Az ilyen esetekben a modell eredmény helyett a mérést fogadtuk el.

Összességében a Balaton részvízgyűjtőn 30 felszínű víztesten (a víztestek 33%-án) bizonyult jelentősnek a diffúz terhelés hatása. Ha az ezekhez tartozó közvetlen vízgyűjtőterületek tekintjük, az összes terület 1637 km², a részvízgyűjtő területének 28%-a. A területi lehatárolása azért fontos, mert a diffúz terhelés csökkentéséhez nem a víztesten, hanem a vízgyűjtő területen kell beavatkozni.

Területi beavatkozások tervezése a diffúz tápanyagterhelés csökkentésére

A diffúz tápanyagterhelésre ható intézkedések a vízgyűjtőn folyó tevékenységet érintik, a területen folyó gazdálkodási módosítása, szélös esetben teljes megváltoztatása révén. A változtatás kikényszeríthető kötelező jogszabályokkal, azonban a legtöbb esetben a területhszabályozást érintő művelési ág- és/vagy művelési mód változását eredményező intézkedések a támogatási rendszer keretei között, önkéntes alapon valósíthatók meg. (részletesen lásd 8-9 melléklet, amelyik az VGT és az agrártámogatások kapcsolatát mutatja be).

A terhelések hatáselemzésén alapuló tervezes során az önkéntes rendszerek határozza, hogy a tényleges beavatkozási területek előre nem tervezhetők, így a beavatkozások hatékonysága sem jellemezhető előre. A földhasználók csatlakozási hajlandóságát előre nem lehet kiszámítani, legfeljebb a támogatható célterületek kijelölésével lehet az intézkedéseket azokra a területekre irányítani,

A területhasználatokra ható (földhasználat és azon történő gazdálkodást befolyásoló) intézkedések tervezése ezért elsősorban a területi differenciálás szempontrendszerének kialakításán (és ennek alkalmazásán) alapul. A területkijelölésnél figyelembe vett tényezők az alábbiak:

- **Jelentős diffúz terhelés miatt kockázatos víztesthez tartozó közvetlen vízgyűjtők**, melyek a vízminőségi modellel végzett hatáselemzés során lettek kijelölve (30 víztest vízgyűjtő, a terület 285-a). Az elemzés nem csak a Balatont, hanem minden felszíni víztestet egyenként és az átadó hatásokat is figyelembe veszi.

- **Jelentős forrásterületek**, melyek meghatározása a terhelés modellből történt: azok a vízgyűjtők, melyeknél a víztest vízgyűjtőre számított fajlagos terhelést az ugyanarra a területre érvényes összes lefolyással elosztra a kapott koncentráció a jó állapotra érvényes N és P értéket meghaladja (70 víztest, a vízgyűjtő 85%-a). Megjegyezzük, hogy a jelentős forrásterületek a víztestekben a lefolyás mentén összegződő hatások miatt nem minden esetben okoznak határértéket meghaladó koncentrációt, azaz nem minősülnek jelentős terhelésnek).

- **Azok a vízgyűjtők, melyeknél jelentős a felszíni víz nitrát terhelése felszín alatti vízből (alapozomból)**. Azoknak a víztesteknek a vízgyűjtői, ahol a vízminőségi állapotérték az összes szervetlen N komponensre nem éri el a jó állapotot, és ez kizárhatóan nem vezethető vissza pontforrásból származó terhelés hatására. Ez a vízgyűjtőn két Balaton felvidéki, egy somogyi és két észak zali víztestet érint.

- **Mezőgazdasági erózió miatt érzékeny vízgyűjtők**, melyeken az USLE modellből származtatott talajveszteség alapján a MONERIS modell eredményei szerint a mezőgazdasági területekről származó talajveszteség a vízgyűjtő átlagában a 100 kg/ha,év értéket meghaladja. A Balaton vízgyűjtőn ez csupán 8 víztest vízgyűjtőn fordult elő, ami a terület 4 %-a. Az ilyen jelentősen eróziós mezőgazdasági területek legnagyobb arányban a Zala középső szakaszának vízgyűjtőjét jellemzik, azonban a déli (Somogyi) és a Balaton felvidéki művelt területei is veszélyeztetettek. Az Alai dombvidéken és az eséssel rendelkező északi és déli vízgyűjtő kisvízfolyásain nagymértékű az erózió a talaj szerkezetének következtében. A vízgyűjtőn kiemelt szerepe van a szőlő és bortermelésnek. A művelt területeken a kedvezőtlen fekvés és nem megfelelő talajvédelmi beavatkozások miatt jelentős az erózió mértéke.

- **Természetes erózió miatt érzékeny vízgyűjtők**, melyeken az USLE modellből származtatott talajveszteség alapján a MONERIS modell eredményei szerint a természetes felszínborítású (főként erdős) területekről származó talajveszteség a vízgyűjtő átlagában az 500 kg/ha,év értéket meghaladja. A mezőgazdasági erózióhoz
viszonyítva annál lényegesen nagyobb területen jelentkező probléma, mely 37 víztest vízgyűjtőt, a terület 40%-át érinti).

További szempontot jelentett a kijelölésnél a víztest vízgyűjtők CLC kategóriák szerint meghatározott földhasználati aránya (pl. erdősültség, legelők aránya egy bizonyos százalékos területarányt meghalad)

A területkijelölés néhány eredményét a 8-3. ábra szemlélteti.

8-3. ábra: Jelentős diffúz terhelést okozó vízgyűjtők, jelentős forrásterületek, erózió miatt érzékeny vízgyűjtők és felszín alatti vízből származó terhelés miatt kockázatos víztestek vízgyűjtői

Az alábbiakban alintézkedésenként bemutatjuk a területi prioritásokat meghatározó szempontokat.

2.1 Tápanyag kihelyezés tényleges korlátozása szántó és ültetvény területeken az EU Nitrát Irányelvben és a Közös Agrárpolitikára vonatkozó rendeletben foglaltak szerint, nitrát-érzékeny területeken, erózió-érzékeny területeken, valamint a vízfolyások mellett kijelölt védősávokban. Az intézkedés az okszerű tápanyag használatot írja el, lényegében a „Helyes mezőgazdasági gyakorlat (HMGY)” kötelező szabályainak betartását jelenti, mint alapintézkedés. Területi alkalmazása ezért széleskörű, minden olyan területen alkalmazandó, melyen a diffúz terhelés veszélye fennáll: Terhelés-hatás elemzés szerint jelentős diffúz terhelést okozó vízgyűjtők + erózió érzékeny mezőgazdasági területek + nitrátérzékeny területek.

2.2 Tápanyag kihelyezés tényleges korlátozása az alapot meghaladó mértékben önkéntes agrár-kerületi programok (ÁKG) keretében. Az intézkedés a 2.1 alapintézkedésnél szigorúbb korlátot ír el, ezért az alkalmazás célterületét azok a vízgyűjtők jelentik, melyen a tápanyag bevitel az állapotértékelés eredményével igazoltan kockázatot okoz: Terhelés-hatás elemzés szerint jelentős diffúz terhelést okozó vízgyűjtők + szennyezett felszín alatti vízből származó nitrát terhelés (együttes feltételként megadva).

2.3 Tápanyag-gazdálkodási terv alapján történő tápanyag kihelyezés szántók esetében, agrár-környezetvédelmi célprogramok (ÁKG) keretében. Az intézkedés tartalmában azonos a 2.1 intézkedéssel, mely a nitrátérzékeny területekre kötelező, az intézkedés azonban kiterjeszthető az összes olyan vízgyűjtőre, melyen a diffúz terhelés veszélye fennáll: Terhelés-hatás elemzés szerint jelentős terhelést okozó vízgyűjtők + erózió érzékeny mezőgazdasági területek.

2.4 Művelési ág váltság (szántó-gyep, szántó - erdő, szántó-vizes élőhely konverzió) kiegészítő intézkedés, mely a korábbi művelési gyakorlat mellettel teljes felhagyását jelenti. Alkalmazása ott indokolt, ahol a területhasználatból származó terhelésből származó vízminőségi kockázat fennáll, vagy annak megelőzése céljából: Terhelés-hatás elemzés szerint jelentős terhelést okozó vízgyűjtők + erózió érzékeny mezőgazdasági területek.

17.1 Szennyezőanyag és hordalék lemosódás csökkentése nyelepettel és fásítással, lejtős területeken teraszolással, belterületi növénytermesztés izolálásával. Ide tartozik minden olyan intézkedés, mely a művelési ág megtartása mellett a tápanyagok továbbításának akadályozására (tápanyag transzportra) hatnak.

17.2 Erózió-érzékeny területeken a meglévő teraszos művelés fenntartása, bizonyos kulturák termesztésének korlátozása, illetve a fedettség biztosítása. 17.1-ből az erózió szempontjából veszélyeztetett területekre vonatkozó kötelező szabályok, kiegészítő intézkedésként alkalmazva. Alkalmazási célterület az összes kijelölt erózió érzékeny vízgyűjtő.

17.3 Erózió-érzékeny területek kijelölésének felülvizsgálata, finomítása – horizontális intézkedés, melynek célja a kijelölés további pontosítása és a veszélyeztetett területek adminisztratív lehatárolása oly módon, hogy beilleszhető legyen a támogatási feltételként a támogatási rendszerbe (MePAR blokk szintű kijelölés). Az alaptéka a terv mellékleketként már
rendelkezésre áll, a talajveszteség nemzetközileg elfogadott, hazai viszonyokra adaptált számítási módszerével (USLE – univerzális talajveszteségi egyenlet).

17.4 Szennyezőanyag és hordalék lemosódás csökkentése erózió-érzékeny területen agrár-környezetvédelmi célpont (AKG) keretében (pl. erózióvédelmi talajművelés, táblamenti szegélyek, terasz, szintvonal menti sáncok, gyűjtőárok). Az erózió csökkentés leghatékonyabb elemei, melyek kiegészítő intézkedésként alkalmazandó azokon az erózió szempontjából veszélyeztetett területeken, ahonnét jelentős terhelés éri a víztesteket: az összes mezőgazdasági erózió érzékeny vízgyűjtő + a terhelés-hatás elemzés szerint jelentős diffúz terhelést okozó vízgyűjtők (együttes feltételként alkalmazva).

17.5 Szennyezőanyag lemosódás csökkentése síkvidéki területen agrár-környezetvédelmi célpont (AKG) keretében (pl. táblamenti szegélyek, mélylyazejtés), tehát elsősorban a földhasználat művelési módjainak megváltoztatása révén művelési ág változtatása nélkül (lefolyás csökkentését szolgáló vetésszerkezet, táji elemek, agrár-technikai módszernek alkalmazásával). Területkijelölés szempontjából a 17.4 komplementere: Nem erózióérzékeny területek, ahol a terhelés-hatás elemzés szerint jelentős a diffúz terhelés.

17.6 A legeltetés és a takarmánygazdálkodás jó gyakorlata legelőkre. Az AKG gyepesítésre vonatkozó szabályai, melyek a már gyepesítésbe bevont területeken alkalmazhatók. A kijelölés a terhelés-hatás elemzés alapján jelentős diffúz terhelésű vízgyűjtőkre történt, ahol a legelő részaranya aránya > 10%.

17.8 Vízfolyások és tavak melletti pufferzónák kialakítása gyepesítéssel vagy agrár-erdészeti módszerrel (összehangolás a parti növényzónák rehabilitációjával, árvízvédelmi és fenntartási szempontok figyelembevételével (lásd 6.2, 6.3, 6.7, 6.8, 3 intézkedések). Az egyik legfontosabb, diffúz terhelés elleni védelmet szolgáló intézkedés. Minden olyan víztest mentén szükséges az alkalmazása, melyen a terhelés-hatás elemzés alapján a közvetlen vízgyűjtőről jelentős terhelés érkezik.

17.9 Az erózió és a lefolyás csökkentése erdőterületeken, a jó erdőgazdálkodási gyakorlat alkalmazásával (zárt korona vagy aljnövényzet, tarvágás mellőzése, erdei utak kijelölése). Az intézkedést az indokolja, hogy a természetes területekről, elsősorban erdőkből a mezőgazdasági területeknél is magasabb talajveszteség jellemző, a nem megfelelő fenntartás miatt. Az alkalmazás célterületei a természetes erózió miatt kockázatos vízgyűjtőterületek, ahol átlagot meghaladó az erdő részarányú erősültség jellemző (> 20%).

29.2 Állattartótelepek korszerűsítése az EU Nitrát Irányelv alapján – kötelező alapintézkedés a nitrát érzékenyek kijelölt területeken.

30.1 Mezőgazdasági területről származó belvíz lemosódás a befogadóba történő bevezetés előtt (szűrőmező). A belvízvezetésből származó tápanyagterhelés csökkentésére irányuló kiegészítő műszaki intézkedés. Alkalmazási célterületét az olyan síkvidéki vízgyűjtők jelentik, melyeken a belvíz veszélyeztetettség jellemző és a jelentős terhelést okoz a víztesten. Alkalmazási célterület a 17.5 intézkedéssel azonos, azonban az intézkedés a belvíz kockázatos területek kijelölésének pontosítását igényli.
A felsorolt intézkedések hatásossága különböző. Fontos, hogy az alkalmazás célirányosan történjen és a költség igényesebb területi beavatkozások ott valósuljanak meg, ahol azok leginkább hatékonyak.

A diffúz terhelésekezhez a belterületek is hozzájárulnak. Bár ezek általában nem elsősorban a szerves- és tápanyagterhelés elsődleges forráste rületei, a 21.4 Települési eredetű, belterületi növénytermesztésből, állattartásból, közterületekről származó terhelések csökkentése intézkedési elem a Balaton vízgyűjtőn a tápanyagterhelés csökkentésnek is fontos eszköze.

8-7. táblázat: Diffúz terhelésre ható intézkedések alkalmazási célterületének meghatározásához figyelembe vett kritériumok és a kijelölt célterületek (potenciális alkalmazási területek) nagysága

<table>
<thead>
<tr>
<th>Intézkedési elem</th>
<th>Jelentős diffúz terhelés a víztesten (terhelés hatás elemzés alapján)</th>
<th>Jelentős vízforrásterület (terhelés modell)</th>
<th>Felszínű víz-jelentős nitrát-terhelés felszín alatti vízből</th>
<th>Mezőgazdási erózió miatt érzékeny vízgy.</th>
<th>Term. erózió miatt érzékeny vízgy.</th>
<th>Nitrát-érzékeny kijelölt terület</th>
<th>Erdő > 20%</th>
<th>Legelő > 10%</th>
<th>Érintett víztest vízgy. db.</th>
<th>Teljes (pot.) terület, km²</th>
<th>Teljes (pot.) terület, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>92</td>
<td>5757</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>30</td>
<td>1637</td>
<td>28%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>35</td>
<td>1813</td>
<td>31%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>35</td>
<td>1813</td>
<td>31%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>74</td>
<td>4950</td>
<td>86%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>224</td>
<td>4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3</td>
<td>49</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>27</td>
<td>1589</td>
<td>28%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.6</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>15</td>
<td>1047</td>
<td>18%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>30</td>
<td>1637</td>
<td>28%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.9</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>34</td>
<td>2135</td>
<td>37%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.1</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>27</td>
<td>1589</td>
<td>28%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>db.</td>
<td>30</td>
<td>70</td>
<td>5</td>
<td>8</td>
<td>37</td>
<td>92</td>
<td>66</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>km²</td>
<td>1637</td>
<td>4881</td>
<td>175</td>
<td>224</td>
<td>2231</td>
<td>5734</td>
<td>3760</td>
<td>2682</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>28%</td>
<td>85%</td>
<td>3%</td>
<td>4%</td>
<td>39%</td>
<td>100%</td>
<td>65%</td>
<td>47%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jelölések: + addicionális feltétel, x együttes feltétel

8.3.2.4 A VGT2 és a 2014-2020 közötti időszak agrár- és vidékfejlesztési támogatásainak kapcsolata, javaslatok a továbbfejlesztésre

A VGT2 és az agrártámogatási rendszerek kapcsolatának jellemzése

A VGT2 végrehajtásának egyik kulcs ágazata a mezőgazdaság. A mezőgazdasági terhelések csökkentésének meghatározó feltétele a megfelelő agrártámogatási rendszerek működése.
A VGT és az agrárágazati rendszerek kapcsolatát mind a VGT1-ÚMVP időszakára, mind a jelenlegi időszakra (VP-VGT2) részletesen bemutatja a 8-9 melléklet.

Általában is igaz, hogy az agrár-ágazat szereplői közötti sajnálatos módon alacsony fokú együttműködési és innovációs készségek számos módon akadályozzák a versenyképesség, erőforrás-hatékonyabb vagy a környezeti feltételekhez alkalmazkodóbb, összehangolt gazdálkodási struktúrák fejlődését.

További problémát jelent, hogy a támogatások a hasznosított mezőgazdasági területe (HMT) irányultak, néhány kivételtől eltekintve. A támogatásokból kivett területek egy jelentős része azonban fontos tájképző elem, illetve fontos szerepet játszanak a területi vízvisszatartásban.

A jelenlegi támogatási rendszerben gazdálkodók által nyújtott környezeti (ökológiai) szolgáltatások állam által történő elismerése kétszintű:

1) kötelező előírások alkalmazása, amely a közvetlen kifizetések feltétele
2) önkéntes előírások támogatása különböző célprogramokon keresztül, amely rendszerint a művelési agakhoz (szántó, gyep, gyümölcsös, erdő) kapcsolódik.

Mindkét esetben a gazdálkodók „teljesítménye” jellemzően egyedileg kerül elismerésre. Kivétel a tárgy Gazdálkodási mintaterületek, ahol megkövetelik a gazdálkodók együttműködését, gazdálkodói közösségek létrejöttét. Tárgy Gazdálkodási célterületek:

a) Jogszabályok által jelenleg lehatárolt tárgy Gazdálkodási mintaterületek:
 - Vásárhelyi Terv továbbfejlesztése c. program által lehatárolt árvízi tározókhoz kapcsolódó tárgy Gazdálkodási területek
 - Ős-Dráva program célterületei,
 - Duna–Tisza-közti homokhátság vízhiányos ökológiai állapotának javítását szolgáló céltájékozódási területek

b) Egyéb, előkészítés alatt álló tárgy Gazdálkodási területek.
A közös cselekvési lehetőségek feltárására és az együttműködési formák és lehetőségek vizsgálatára további mintaprojektek indítása szükséges. A tájgazdálkodási célterületek lehetőséget biztosítanak továbbá az ún. „zöld pont” típusú agrár-környezetvédelmi kifizetési rendszer bevezethetőségének tesztelésére, amelyek a következő EU támogatási időszak agrár-környezetvédelmi kifizetéseinek alapjául szolgálhatnak.

A tájgazdálkodás megvalósításának alapvető feltétele tehát a közösségi teljesítmények elismerése, a közös cselekvésre való ösztönzés. A különböző vízgazdálkodási, vízvédelmi tevékenységek a gazdálkodói közösségek különböző fokú együttműködését igénylik:

- Alapvetően az időszakos árasztás esetén szükséges több gazdálkodó közös együttműködése, mivel a mélyfekvésű területek csak kismértékben tagolhatók (tájgazdálkodási célú töltésekkel).
- Az állandó elárasztás is igényelheti a gazdálkodók együttműködését, ha az adott földterület több gazdálkodó tulajdonában (használatában van).
- Vízjárta területek létrehozása is igényelhet gazdálkodói együttműködést, ha a megőrzendő belvízfoltok több gazdálkodó tulajdonában (használatában) lévő földterületet érintenek.
- Az elárasztás nélküli művelés nem igényel ugyan gazdálkodói együttműködést a vízgazdálkodás vonatkozásában, azonban amennyiben e területekről a belvizek elvezetése és a területen történő hasznosítása megvalósul, e gazdálkodók esetében is olyan környezetkímélő művelés megvalósítása indokolt, amelyek nem okozzák az elvezetett vizek káros mértékű szennyezését.
- Erózióvédelem hatékonyságának érdekében az egy vízgyűjtő területen belül gazdálkodók együttműködését is erősíteni, illetve támogatni szükséges, illetve közösségi beruházások lehetőségét is biztosítani szükséges.

A 2013. júniusi reform úgy rendelkezik, hogy a közvetlen kifizetések 30%-a a fenntartható gazdálkodási intézkedések az ún. greening (zöldítés) foganatosításától, azaz a talajminőség, a biológiai sokféleség és általában véve a környezet védelméből fog függni. Ilyen fenntartható gazdálkodás többek között a növénytermesztés diverzifikálása, az állandó gyepterületek fenntartása vagy az ökológiai zónák megőrzése a gazdaságokban. A közvetlen kifizetések tehát nemcsak alapjövedelemként szolgálnak a gazdálkodások számára, hanem környezeti közjavak nyújtását is biztosítják.

A zöld komponens elemei közül vízgazdálkodási jelentőségűek:

- a köztes kultúrákkal vagy takarónövényzettel borított területek, valamint
- ökológiai fókuszterületek (EFA) 15 hektár feletti területein belül:
 - a táji elemek (sövény, facsoport, kis tavak, árkok, vízelvezető és öntőző árkok) és
 - a vízvédelemi sávok (HMKÁ vagy bővített változata).

A zöldítés hátránya ugyanakkor, hogy az ökológiai fókuszterület kialakítása csak 15 hektár feletti területek esetében lesz kötelező, így az ennél kisebb területeken gazdálkodók esetében nem kellően ösztönöz vízvisszatartásra alkalmas területek kialakítására. Szintén hátránya, hogy a gazdák egyénileg pályázhathatnak.
Javaslatok a VGT2 és a 2014-2020 közötti időszak agrár- és vidékfejlesztési támogatásainak összehangolásához

A mezőgazdaság az élelmiszertermelés, a helyi gazdasági hálózatok működtetése, az energiatermelés és a foglalkoztatás mellett az egyik legfőbb karbantartója számos természeti erőforrásnak és természeti értéknél. Nem elhanyagolható az a stratégiai küldetés sem, miszerint mind az élelmiszer mind pedig az energia terén kulcsfontosságú a mezőgazdaság szerepe az importfüggőség/kiszolgáltatottság mérséklésében. A VKI végrehajtása során a mezőgazdaság multifunkcionális jellegét kell alapul venni, támogatni kell a mezőgazdaság környezetfenntartó szerepét, illetve a mezőgazdasági tevékenységből származó szennyezéseket a megfelelő szintre mérsékelni szükséges.

A VGT szempontjából alapvető fontosságú, hogy olyan támogatási rendszer kerüljön kialakításra, amely képes figyelembe venni az egyes víztest vízgyűjtők eltérő problémáit, valamint hogy a költség-hatékonyság szempontját figyelembe véve a leghatékonyabb intézkedés kombinációk valósuljanak meg az agrár- és vidékfejlesztési támogatások igénybe vételével.

A közvetlen kifizetések „zöldítési” követelménye, valamint a VGT I. javaslataira jelentősen építő Vidékfejlesztési Program (2014-2020) várhatóan nagymértékben elősegítheti az agrárium ágazat hozzáállását a vízvédelmi célkitűzésekhez. Továbbiakban, a támogatási eljárások részletes szabályainak kidolgozása során erősíteni szükséges, hogy az agrár- és vidékfejlesztési támogatások révén tájé léptékű (víztest vízgyűjtő szintű) komplex, összehangolt gazdálkodói cselekvések valósuljanak meg.

A Vidékfejlesztési Program 35. cikk (Együttműködés) alapján az Európai Unió „pilot” projekteket támogat, amelyek révén komplex videkfejlesztési akciók valósulhatnak meg. Mindezekben felül azonban szükség van az egyes agrár- és vidékfejlesztési programok támogatási célterületei közötti szinerjígról megtérítésére is.

A „zöldítés” keretében az Ökológiai jelentőségű területek (Ecological Focus Area) kialakításának során javasolt érvényesíteni, hogy e területek kialakítása hatására csökkenjen a terhelt lefolyás. A vízvédelmi szempontból megfogalmazható feltételek, amelyek az EFA kijelölés keretében alkalmazható tájémekek elhelyezéséhez adnak prioritási szempontokat:

enschőa terület vízfolyással határos, akkor az ökológiai jelentőségű terület kialakításával a jelenleg is jogszabályi kötelezettség szerint kialakítandó vízvédelmi sávot szélesíte

lejtős terepen a lefolyási irányra merőlegesen helyezkedjen el a kialakított terület

belvizes síkságon a belvíz-érzékeny mezőkön belvíz-érzékeny területet lehetővé teszi az EFA tájémen helyet

Ösztönzés szempontjából a leghatékonyabb megoldás akkor lenne elérhető, ha a feltételek be tudnak épülni a zöldítési kifizetés (80 €/ha) elfogadási feltételei közé.

Részletes javaslatok a VGT II. és a 2014-2020 közötti időszak agrár- és vidékfejlesztési támogatásainak összehangolásához:

1) Legfontosabb feladat, hogy a Vidékfejlesztési Programban lehatárolt vízvédelmi zónarendszer elemei (erődíő-érzékeny területek bővítése, aszály-érzékeny szántó területek kijelölése, belvíz-érzékeny szántó és gyep) további finomításra kerüljenek a jól elérhetőbb ökológiai állapotu/potenciálú víztest vízgyűjtők figyelembe vételével. Mindezt lehetőséget
biztosít arra, hogy jönél rosszabb ökológiai állapotú/potenciálú víztest vízgyűjtőkön gazdálkodókat előnyben lehessen részesíteni (pl. többletpontokkal) a vízvédelmi célú pályázati források vonatkozásában. Az összehangolás során ezáltal lehetőség kínálkozik arra, hogy a vízvédelmi célú pénzügyi erőforrásokat a kockázatos víztestek vízgyűjtőin gazdálkodók számára koncentráljuk, javítva ezzel a költség-hatékonyságot is.

2) A területi összehangolást követően szintén fontos, hogy az egyes víztest minősítési kategóriák összehangolásra kerüljenek az agrár- és vidékfejlesztési támogatási lehetőségekkel, egyrészt, hogy meghatározható legyen mely támogatási célerületeken szükséges a jönél rosszabb ökológiai állapotú/potenciálú víztest vízgyűjtőkön gazdálkodók előnyben részesítése, másrészt hogy a gazdálkodók számára egyértelmű legyen, hogy az adott víztest vízvédelmi problémáinak kezelésére milyen támogatási források állnak rendelkezésre.

3) Az erózió-, de a belvízérzékeny területeken is jellemző, hogy az optimális intézkedések meghozatalához pl. területi vízvisszatartásra alkalmas területek meghatározásához, az erózió megfékezéséhez szükséges műszaki beavatkozások megtervezéséhez komplex víztest vízgyűjtő szintű tervezés és gazdálkodói szintű közös cselekvés szükséges, azaz az egyes beavatkozások ott valósuljanak meg, ahol azokkal a legnagyobb eredményt lehet elérni. Ennek biztosítása alapvetően az alábbi módon történhet:

a) vízvédelmi, továbbá vízvízterv-készítési szaktanácsadói hálózat működtetése, kialakítása. Olyan vízvédelmi agrár-szaktanácsadók képzése szükséges, akik az adott víztest vízgyűjtő vízvédelmi problémáit kellőképpen ismerik, és megfelelő szaktanácsadást tudnak biztosítani a gazdálkodók számára a hatékon megoldások és a szükséges pénzügyi források megtalálásán. Az egyes vízvédelmi célú beavatkozások elsámosolhatók ugyanis egyes „zöldítési” kategóriákban is, amely a közvetlen kifizetések egyik feltétele. A szaktanácsadó hálózat biztosíthatja azt is, hogy a szükséges fejlesztéseket azon gazdálkodók valósítsák meg, ahol az adott intézkedés vízvédelmi szempontból a legoptimálisabb.

b) a hatékon vízvédelmi szaktanácsadóshoz alapvetően szükséges, hogy a szaktanácsadók képzéséhez a különböző probléma típusok kezelésére vonatkozóan ün. „jó gyakorlatok” álljanak rendelkezésre. Ezen jó gyakorlati „kézikönyv”-ek elsősorban szakmai útmutatóként szolgálnak mind a szaktanácsadók, mind a gazdálkodók számára. Szintén támogatandó a táji léptékű vagy víztest vízgyűjtő szintű helyi vízgyűjtő-gazdálkodási tervek kidolgozása mezőgazdasági és erdészeti gazdálkodók számára.

c) szintén támogatni szükséges, hogy vízvédelmi és vízvízterv-készítési célú témaköröket felölelő példaértékű bemutatóüzemek valósuljanak meg, amelyek a fejlesztéseket igénybe kívánó vevő gazdálkodók számára „referenciaként” szolgáltatnak beruházási döntéseik meghozatalában.

A fenti javaslatok megvalósításához igénybe vehető támogatás az EMVA 14. cikk Tudásátadás és tájékoztatási tevékenységek keretein belül (szaktanácsadók, képzések, bemutató üzemek támogatása).

Amennyiben a kialakított támogatási rendszer összekapcsolva egy, szükséges vízvédelmi képzési, tanácsadási rendszerrel nem ösztönzik kellően a gazdálkodók közös cselekvését igénylő vízvédelmi feladatok megvalósulását (pl. a megfelelő partmenti vízvédelmi puffersávok kialakítása,
mélyfekvésű területeken vízvisszatartás megvalósítása stb.), megfontolandó a félidei értékelést követően a Vidékfejlesztési Program 35. cikk (Együttműködés) alapján komplex gazdálkodó akciók erőteljesebb támogatása, ösztönzése.

8.3.3 Veszélyes anyagokkal kapcsolatos intézkedések

Az felszíni vizek vészeleyes anyagok felhasználásából és keletkezésából származó terheléseivel a 3.2 fejezet foglalkozott. Az ökológia minősítés részét képező specifikus szennyezőkre és az elsőbbségi anyagokra vonatkozó kémiai minősítés eredményét a 6.1 fejezet tartalmazza.

A terheléseket foglalkozó fejezetben bemutatott bizonytalanságok a vészeleyes anyagokat érintő intézkedések esetében a DPSIR szerinti terhelés-hatás elemzést az esetek túlnyomó többségében nem tették lehetővé, elsősorban a terhelések és az állapotértékelés kapcsolatának hiánya miatt. Az ismert terhelésekhez köthető, kibocsátási pont - víztest befogadó léptékű tervezésre csak korlátozottan volt lehetőség. Ebből következően az intézkedési programban a legnagyobb hangsúly továbbra is monitoring fejlesztésén van. A megfogalmazott szabályozási javaslatok a vészeleyes anyagokból származó terhelések terve a kockázat minimalizálását tartják szem előtt.

8.3.3.1 Kommunális szennyvíztisztítókból származó vészélyes anyag vagy specifikus szennyezőanyag okozta terhelés csökkentésére vonatkozó intézkedések

Az érvényben lévő 2013/39/EU Irányelv tartalmazza mindazon szennyezőanyagokat, melyek hatása akut vagy krónikus módon veszélyt jelenthet a vízi ökoszisztémára vagy az emberre. Az irányelvben foglalt 45 anyagon túl Magyarország a cink, réz, króm és arzén anyagokat választotta vészeleyesnek okozta kockázat csökkentésére vonatkozó intézkedések.

A mikroszennyezők esetleges eltávolítása jelentős beruházási terhet is ró a kibocsátókra (pl. negyedleges tisztítás bevezetése és üzemeltetése a települési szennyvíztisztítóknál). Az eltávolításra azonban csak akkor van szükség, ha a mikroszennyezők jelentős terhelést jelentenek a befogadóra. Akkor jelentős a terhelés, ha a befogadó már eleve terhelt ezen komponensekre, ha kicsi a vízhozama és ha nagy a kibocsátott mikroszennyező anyag tömegárama. A befogadó terhelését az immiissziós monitoring és adatbázis, a vízhozamat a vízrajzi mérések és adatbázis szolgáltatja. Az emissziós vizsgálatoknál pedig a harmadik változó, a mikroszennyezők koncentrációját, vagy anyagáramát kellene szolgáltatniuk. Bár a tervezett kutatási-adatgyűjtő programok keretében teljes emissziós profil vizsgálatok is történnek váratlan, mégis szükséges az önellenőrzési és a hatósági emisszió méretek kiegészítése a releváns mikroszennyezőkkel. Egy-egy konkrét termelési ágat, ide sorolva a szennyvíztisztítást is, jellemző releváns szennyezők körét egyedi vizsgálattal, vagy a kutatási-adatgyűjtő programok segítségével lehet megállapitani. A rendszeres és megbízható emissziós vizsgálatok segítségével válik lehetővé a jelentős/fontos
kibocsátók esetén a szennyezés/terhelés csökkentését célzó vízminőség javító intézkedések meghatározása.

Jelenleg az emissziós mért paraméterek köre nem követi az immissziós szabályozás részletező elvét. Az önellenőrzés során mért emissziós komponens vagy az összes formára vonatkozik (pl. toxikus fémek) vagy pedig csoportparaméter (pl. adszorbeálható szerves halogén vegyületek, PAHok), mely megnehezíti az állapotértékelés és kibocsátás közt közvetlen kapcsolat megteremtését. Az alábbiak alapján a kibocsátott szennyező anyagok közül komponens szinten egyedül a fémek jellemzőek, de megjegyzendő, hogy a mért összes fémből nem ismerjük a megoszlást az oldott és partikulált forma között. A hatáselemzéshez a befogadó legyakoribb vízhozamával számolt hígulási arányt, a felszíni víztestek állapotértékelési eredményét, a befogadóban a kibocsátott szennyvízzel jelentkező koncentráció növekményt (c_eq) és az adott fémről vonatkozó immissziós határértéket (EQS) használtuk fel.

A toxikus fém emisszió hatásának elemzése a következő szempontok figyelembevételével történt:
- a bevezetés fontos, ha EQS/2< c_eq< EQS vagy a hígulási arány 100-nál kisebb, az állapotértékelés fémültépést mutat valamint a túllépést a kibocsátó technológiája indokolhatja
- a bevezetés lehet, hogy jelentős, ha EQS< c_eq< EQS*5 vagy a hígulási arány 10-nél kisebb, az állapotértékelés fémültépést mutat valamint a túllépést a kibocsátó technológiája indokolhatja
- a bevezetés jelentős, ha c_eq> EQS*5

Ha egy telephelyhez több azonos víztestbe való bevezetés is tartozott, akkor valamennyi bevezetés azonos minősítést kapott. Az elemzések során nagyon kevés esetben jelentkezett összefüggés a koncentráció növekmény és az állapotértékelés eredmény között. Végeredményként a kommunális szennyvíztisztítók kibocsátása közül 11 „jelentős”, 18 „fontos”, további 30 „lehet, hogy jelentős” (lásd 3-1 melléklet) besorolást kapott.

Tekintettel arra, hogy a mért komponens az összes fém mennyiségét adja meg, ezért az oldott és partikulált forma közti megoszlás felmérése érdekében kiegészítő monitoring elvégzése szükséges intézkedésként a toxicitás pontos megállapításához és az erre épülő szennyezés csökkentési elv kidolgozásához.

Abban az esetben, ha a kibocsátónál a technológia vagy a beérkező közcsatornás szennyvíz minősége indokolta, további szennyezés csökkentési intézkedéseket írtunk elő a „15.2 A kommunális rendszerbe vezetett ipari szennyvíz vízminősége minden paraméter tekintetében feleljen meg a legjobb rendelkezésre álló technológia (BAT) alapján az üzemem előírt értékek), kivéve a kommunális telep által kezelt paramétereket” intézkedés megjelölésével (8-10 melléklet).

8.3.3.2 Ipari és egyéb bevezetésekből származó veszélyes anyag vagy specifikus szennyezőanyag okozta terhelés csökkentésére vonatkozó intézkedések

Az intézkedések kidolgozása a 8.3.2. fejezetben már ismertetett, kommunális szennyvíztisztítóknál is alkalmazott elemzési módszer eredményei alapján történt, mely következtében 10 kibocsátó „jelentős”, 9 bevezetés „fontos”, további 4 pedig „lehet, hogy jelentős” besorolást kapott a 604 bevezetésből. A toxicitás megállapításához ezen telephelyek esetében is a 14.1 intézkedés keretében kiegészítő monitoring végrehajtása szükséges intézkedésként. Abban az esetben, ha a technológia és a közcsatornás ipari szennyvizek minősége indokolta további, szennyezés csökkentési intézkedéseket adtunk meg az érintett kibocsátókra és víztestekre (8-10 melléklet), az
elsőbbségi anyagokra és az egyéb specifikus szennyezőkre vonatkozó intézkedési elemek megjelölésével:

15.1 Elsőbbségi anyagok kibocsátásának szabályozása az iparáganként meghatározható legjobb rendelkezésre álló technológia (BAT) alapján. A hazai üzemekre megállapított "BAT-ok" aktualizálása.

16.1 Az ipari üzemekből felszíni befogadóba vezetett szennyvíz minőségére vonatkozó követelmények teljesítése. A technológia által biztosított koncentráció és a határérték közötti különbség kezelése tisztítással.

A kormány 248/2015. (IX.8.) kormányrendeletet adott ki egyes vízvédelmi tárgyú rendeletek módosításáról. Ez a 2013/39/EU irányelv hazai adaptálását jelenti. A vizek védelmével és a vízgyűjtő-gazdálkodási tervezéssel kapcsolatos kormányrendelet szintű módosulások:

- **220/2014. Korm. rendelet esetében:**
 - Fogalmi rendszer bővült: mátrix és bióta taxon (vízi környezeti elem a mátrix: víz, üledék, bióta; bióta taxon: altörzs, osztály, vízi rendszertani kategória);
 - A 8. § változott, a jó kémiai állapot elérésére vonatkozó követelmény itt is megjelenik;
 - A rendelet 1. sz. melléklete kibövült 12 anyaggal;

- **221/2004. Korm. rendelet esetében:**
 - 3.§ (6) bek. d) pont a küszöbértékek változásával összefüggésben a felszín alatti vizekre vonatkozóan;
 - 2. sz. melléklet 11. pontja kiegészül a küszöbértékek meghatározására vonatkozóan.

A 8.4 fejezet és a 8-14 melléklet tartalmazza a további komplex felszínű vízminőség-védelmi jogszabályi javaslatokat.

8.3.3.3 Diffúz forrásból származó veszélyes anyag terhelés csökkentésére irányuló intézkedések

A mezőgazdasági diffúz forrásból származó intézkedések az alábbiak:

- **3.1 Növényvédelő szerek alkalmazásának szabályozása EU Peszticid Irányelvalapján (szántó, ültetvények és legelő esetén)**
- **3.2 Növényvédeőserek alkalmazásának korlátozása agrár-környezetvédelmi célprogram (AKG) keretében**

A környezettudatos tápanyag-gazdálkodás és növényvédelem hiánya a vizek minőségének veszélyeztetése mellett kedvezőtlen hatással van a talajok állapotára is. Ezzel szemben az okszerű vegyszerhasználat csak a legszükségesebb vegyi anyagot juttatja a termelésbe és a környezetbe. Az okszerű használat megfelelő mértékben csökkenti a termelés kockázatait de a
túlzott védelemből adódó környezetterhelést is. A hagyományos termelési módokról való áttéréshez szükséges a technológiák és ismeretek átadása és a megfelelő infrastruktúra kialakítása is, ami az okok időbeli felismerését és a legkisebb és leghatékonyabb beavatkozás meghatározását és végrehajtását támogatja.

Az okszerű növényvédőszer használat, illetve az ezekre kevésbé támaszkodó termék-struktúrára vagy termelési módok valamelyikére való átállás jelentősen hozzájárul a felszíni és felszín alatt vizek állapotának javításához, a jó állapotú víztestek állapotának megőrzéséhez.

Az okszerű növényvédőszer alkalmazásának szabályait a 43/2010. (IV. 23.) FVM rendelet tartalmazza.

A 2009–2010 gazdálkodási évtől az agrár-környezetgazdálkodási (AKG) támogatásokat igénylőknél a Kölcsönös Megfeletetlenség (KM) követelményein felüli növényvédelmi minimumkövetelményeket is ellenőrzi a hatóság. Az AKG növényvédelmi minimumkövetelményekre vonatkozó ellenőrzések 2011. január 1-jétől az alábbi előírások betartására irányulnak:

Gondoskodni kell a növényvédelemi tevékenység során kiürült csomagoló burkolatok, göngyölegek szakszerű összegyűjtéséről, kezeléséről, megsemmisítéséről. (pl.: növényvédelmi csomagolóeszköz más célra még tisztított állapotban sem használható). A minimumkövetelmény a 2014-2020 közötti AKG jogcímenetében is alkalmazásra kerül.

8.3.4 **Hidromorfológiai intézkedések**

8.3.4.1 **Morfológiai elváltozások enyhítése**

Az intézkedések célja a folyók hosszirányú és keresztrányú szabályozottságából adódó ökológiai problémák megszüntetése vagy enyhítése. A kezelendő problémák: kiegyenesített meder, kanyar átvágások, módosított mederforma és parti sáv, korlátozott oldalirányú mederfejlődés, szűk és/vagy módosított területhasználattal rendelkező hullámtér, hullámtéri és mentett oldali holtágak és mellékágak gyenge vízellátottsága.

Tekintettel arra, hogy a különböző hidromorfológiai módosítások gyakorlatilag minden felszíni víztestet érintenek, viszont ezek hatása általában kisebb, mint a vízminőségi terheléseknek, valamint a hatások enyhítése nem minden esetben lehetséges anélkül, hogy annak hátrányos vízgazdálkodási következményei ne legyenek, ezért a javító beavatkozásokat térben és időben gondosan kell ütemezni.

A jelentős morfológiai elváltozások sok esetben olyan emberi igényeket elégtéken kielégítik, amelyek más módon történő megoldása aránytalanul drága lenne. Ezekben az esetekben környezeti célkitűzés lehet enyhébb, vagy időbeli mentesség alkalmazható, sőt az erősen módosított kategóriájú víztesteknél speciális csak a hidromorfológiai elváltozásokra vonatkozó „kivétel” alkalmazható. Ezeknél az ún. jó ökológiai potenciál elérése a célkitűzés, amely az eredeti vízgazdálkodási cél megőrzése mellett ökológiai szempontú kompenzációs intézkedéseket igényelhet, amelyeket megkülönböztetésül 3 számjegyű kódolással jelölünk.

A VGT hidromorfológiai intézkedéseket térben és időben úgy célszerű ütemezni, hogy elsősorban az egyébként is beavatkozást igénylő vizeknél végrehajtandó rehabilitáció, revitalizáció, fejlesztés, stb. keretében az ökológiai szempontból előnyös megoldásokat előtérbe kell helyezni. Ezáltal a VKI szempontjainak jobban megfelelve fokozatosan átalakulhat a tervezési, kivitelezési, fenntartási,
üzemeltetési gyakorlat, anélkül, hogy az emberi igényeket kielégítő vízgazdálkodási célok sérülnenek. Ezt az elvet támogatja a VKI 4.7 cikk első bekezdése, amely a hidromorfológiai beavatkozások esetében – a cikkben előírt feltételek teljesülése esetében - mentességet biztosít az új változások miatt bekövetkező állapotromlás esetére is. Kiemelt figyelmet érdemelnek az árvízvédelem miatt végzett jelentős átalakítások (árvédelmi töltések, módosított meder, hullámtér, tározás). A VGT és az ÁKK összehangolásával külön fejezet foglalkozik (8.5. fejezet).

Egyrésztt a meglévő mítúgágy beépülnek az ÁKK-ba, másrésztt új, hasonló funkciójú mítúgáyat, illetve beavatkozásokat terveznek. A tervezésekor figyelembe kell venni a jó ökológiai potenciál eléréséhez kapcsolódó követelményeket és a szükséges kompenzációs intézkedéseket.

8.3.4.2 Vízkivételek szabályozása, illetve a vízjárásban bekövetkezett változások enyhítése

A vízkivételek, átvezetések, vízmegosztás, tározás, vízbevezetések módosítják a vízjárást, a vízszinteket és a vízhozamotokat. Ezek mértéke meghaladhatja az ökológiai hatás szempontjából még elfogadható küszöbértéketek. Az intézkedések céljaik:

- a vízhasználatok nyilvántartása és engedélyezése (felülvizsgálata),
- víztakarékos módszerek alkalmazásának elősegítése,
- a vízjárásban bekövetkezett hatások csökkentése (üzemelés módosítása vagy kompenzáció).

Önmagában általában a vízkivetl nem tekinthető jelentős, enyhébb célkitűzést indokoló emberi beavatkozásnak, amennyiben a vízigényeket más vízkészletekből lehet és kell kielégíteni. Műcsatornák és főmeder közötti vízmegosztás vagy völgyzárógátas tározókban történő vízzivulnálhatás (ivóvíz, öntözés, ipar, rekreáció célra) már tekinthető tartósan megmaradó változásnak, amelynek hatása üzemeltetéssel, vízpótlással csökkentendő.

A vízttest szintű terhelést és a kapcsolódó hidromorfológiai intézkedéseket, a DPSIR táblázatot a 8-7 melléklet mutatja be.

A VGT HM intézkedései speciálisak sok szempontból összehasonlitva a többi intézkedés típusossal.

A legfontosabb jellegzetességeket az alábbiakban foglaljuk össze:

- Lényegesen több HM terhelés van a felszíni vizekben, mint pl. pontszerű szennyvíz bevezetés.
- A terhelések általában valós társadalmi igényeket szolgáló vízgazdálkodási létesítmények, térben és funkció szerint összefüggő vízgazdálkodási rendszerek működéséből adódnak.
- Ahogy a VGT1-ben a jó állapot/potenciál eléréséhez szükséges intézkedési program költségbecslése mutatta a HM intézkedések költségei örömi ráiasítva megvalósítja a 220 Mrd forintot.
- A HM intézkedések jelentős része nem önmagában valósul meg, hanem egy vízgazdálkodási projekt részeként.

Mindebből adódik, hogy a HM intézkedéseket csak fokozatosan, körültkintve térben és időben is szakaszolva, az adottságok és korlátok figyelembe vételével lehet végrehajtani.

A hidromorfológiai jó gyakorlat egyik fontos eleme a fenntartási tevékenység átjónadlása (ezt igazolják a nemzetközi példák is). A jelenlegi mederfenntartási gyakorlat felülvizsgálata célszerű az
alapvető vízgazdálkodási funkciók (pl. árvízvédelmi, belvízvédelmi és öntözési funkciók) megőrzése mellett az ökológiai szempontok erősítésével. Javasolt a vízfolyások típusaira (funkció, vízhozam, egyéb feltételek alapján kategorizálni) jó fenntartási gyakorlat pilot projekteket indítani, a gyakorlatban kipróbálni az egyes fenntartási lehetőségeket. Ezzel a műszaki fenntartási megoldások előnyei, hátrányai világossá válnak, ugyanakkor a költségek is megállapíthatók, a költség-hatékony megoldások kiválaszthatók.

8.3.5 Felszín alatti vizek terhelésének csökkentésére szolgáló intézkedések

A felszín alatti vizek mennyiségi állapotára a terhelést a közvetlen és közvetett vízkivételek jelentik. A gyenge állapotú víztesteken azonban, mint a belvízvédelmi és öntözési funkciók megőrzése mellett az ökológiai szempontok erősítésével. Ezért az intézkedések közül a felszín alatti vízkivételek nyilvántartása, felülvizsgálata, engedélyezése, az engedélyezőség folyamatot fel kell gyorsítani, a jogszabályok ezentúl átfogó, megfelelő feltételekkel, azonban, hogy nagyon sok az engedélyezetlen vízkivétel. A felszín alatti vizek víztestenkénti intézkedési programját a 8-12 melléklet mutatja be.

A felszín alatti vizek mennyiségi állapotát Magyarországon szabályozási módszerekkel lehet leginkább befolyásolni. A felszín alatti vizek vízkivétellel történő terhelése jelenleg is engedélyezett kijelentkező. A szabályozás sokrétű és sokszempontú, hogy a szakértelmű és a közönség is megértsék. Ezért az intézkedések közül a felszín alatti vízkivételek nyilvántartása, felülvizsgálata, engedélyezése, az engedélyezőség folyamatot fel kell gyorsítani, a jogszabályok ezentúl átfogó, megfelelő feltételekkel, azonban, hogy nagyon sok az engedélyezetlen vízkivétel. A felszín alatti vizek víztestenkénti intézkedési programját a 8-12 melléklet mutatja be.

8. fejezet

Intézkedési program

Az általános szabályozási intézkedéseken túlmenően a következő intézkedések javítják a víztestek mennyiségi állapotát.

Az általános szabályozási intézkedéseken túlmenően a következő intézkedések javítják a víztestek mennyiségi állapotát. A termálvíz felhasználása során növelni kell az energetikai kihasználtságot. A visszasajtolási
kötelezettséget alapelvként vissza kell vezetni a szabályozásba. A meglévő vízhasználatok esetében, 2021-ig a használt termálvíz 40%-os visszasajtolási mértéke várható el a társadalmi egyeztetések alapján.

A felszín alatti vizek mennyiségére a vízellátási ágazatban az ivóvízhalózatok rekonstrukciójával lehet legnagyobb mértékben hatni. A jelenlegi 20-30%-os nagysággrendű belső veszteség mérsékeltéje jelentős hatással lehet a felszín alatti víz süllyedésének megállítására.

A sekély porózus rétegek hidraulikailag összefüggésben állnak a porózus rétegekkel, ezért a mélyebb vízkivitelek ezekben is érezhetők a hatásukat. A sekély porózus rétegek jellemző vízkivitele az öntözési célú vízkivétel, az engedély nélküli kútfrázások is ezekre a víztestekre jellemzők. Az öntözési vízigényt a korszerű és víztakarékos technológiák bevezetésével lehet csökkenteni. El kell érni, hogy a lemélyített kutak bejelentésre kerüljenek, és jó minőségben kerüljenek kivitelezésre.

A sekély porózus rétegekre, és közvetlenül a felszín alatti víztől függő élőhelyek állapotára közvetlenül hat a belvízvisszatartás. A felszín alatti vizek állapotjavítására külön projektek nem indulnak, de a belvízgazdálkodással kapcsolatos projektek esetében fő szempontként kell figyelembe venni a felszín alatti vizek állapotát. A sekély porózus rétegek állapotát javíthatja a talajvízdúsítás. Meg kell vizsgálni, hogy a tisztított szennyvíz milyen körülmények között szikkasztható el, különösen tekintettel arra, hogy nagyon sok a diffúz nitrát szennyezés miatt gyenge állapotú sekély porózus felszín alatti víztest.

8.3.6 Ivóvízellátás biztonsága

Az ivóvízellátás biztonsága kiemelt fontosságú cél. Ebbe beletartozik a szükséges készletek védelme, a működő és távlati vízbázisok biztonságba helyezése (a szennyezéstől mentes nyers víz biztosítása a vízkezelési igények csökkentése érdekében), a veszteségek csökkentése és a biztonságos üzemeltetés. Együttesen biztosítják ivóvíz irányelv szerint megkövetelt meglevő minőségű vizet a csapnál.

A VKI szerint a napi 10 m³ ivóvizet szolgáltató, vagy 50 fő ivóvízellátását biztosító (jelenleg működő vagy erre a célra távatállag kijelölt) vízkivétel környezetét (az érintett víztestet vagy annak a tagállam által kijelölt részét) védelemmel kell részesíteni. Ennek a hazai joggyakorlat a közcelú vízbázisok esetén megfelel.

A VGT2 feltárta, hogy a vízbázis védelem hatékonysága nem elegendő, a vízbázisok jelentős részének nincs kijelölt védőidom/védőterülete, és a biztonságba helyezés folyamata sem megnyugtató módon halad.

A vízbázisok belső és külső védőterületen támogatni kell a jó vízbázis védelmi gyakorlat megvalósítását. Területhasználat változással, vízvédelmi célú erdők kijelölésével a szennyezések kockázatát csökkenteni kell.

8.3.7 A természeti értékei miatt védett területek jó ökológiai állapotának elérése érdekében tervezett intézkedések

A vízi, a vizes és a víztől függő szárazföldi élőhelyek állapotának javítása érdekében két önálló intézkedés született. Az egyik a szárazodás következtében degradálódó, a másik a vízszennyezések miatt romló védett, vagy Natura 2000 területek állapotának javítása érdekében. Mindkettő ökológiai jellegű beavatkozásokat egymással.

Az intézkedések megvalósítása részben a vízfolyás-, vagy tó víztestek, részben a vízgyűjtő víztesteken történhet (ld. 8-10. melléklet).

A részvízgyűjtőn a 82 vízfolyás közül 71-en szükséges valamilyen intézkedés a természeti értékei miatt védett területek ökológiai állapotának javítása érdekében. Ezek közül 13 víztesten az intézkedések várhatóan 2021-ig megvalósulnak, nagyrész KEHOP, ill. LIFE forrásból.

A részvízgyűjtőn található 10 tóval tartott víztest közül 9 víztesten szükséges beavatkozás. Közülük a Balatonon, ill. a Kis-Balaton II. tározón tervezett intézkedések 2021-ig várhatóan megvalósulnak KEHOP forrásból, a többi tó esetében 2027 a céldátum.

A részvízgyűjtőn fekvő 92 vízgyűjtő víztest közül 85 vízgyűjtőn tervezett valamilyen természetvédelmi célú intézkedés.

Azokat a beavatkozásokat, amelyek nem köthetők megbízhatóan valamilyen víztesthez, de elengedhetetlenek a vizek által befolyásolt Natura 2000 területek állapotának eléréshez Natura 2000 területre vonatkozóan fogalmaztunk meg (ld. 8-10. melléklet).

A Natura 2000 területekre vonatkozó intézkedések esetében a konkrét terület konkrét problémájának ismeretében dönthető el, melyik víztesten a leginkább hatékony a beavatkozás, hiszen egy-egy Natura 2000 terület kiterjedésétől függően jelentős számú vízfolyással, tóval és akár több vízgyűjtővel állhat kapcsolatban.

Az intézkedések megvalósítása során különös hangsúlyt helyezzünk a vízgyűjtőkön található, lápok és szikes tavak megóvására. Ezeknek az érzékeny élőhelyeknek jellemző problémája a vízhiány, ami elsősorban a környezetükben történő gazdálkodás módosításával enyhülhet. Ilyen intézkedés a 2.4 (művelési ág váltás), és 23 (területi vízvisszatartás). Minden olyan vízgyűjtő víztesten, amelyen szikes tó vagy láp fekszik, ezeket az intézkedéseket elengedhetetlennek tartjuk.

A lápok és szikes tavak ex lege védett területek, melyek részben Natura 2000 területeken belül, részben azokon kívül fekszenek. A Natura 2000 területeken belül található ex lege lápok és szikes tavak előfordulása és a vonatkozó intézkedés is a Natura 2000 területeket bemutató táblázatban (8-10. melléklet) szerepel. A Natura 2000 területeken kívül fekvő lápok és szikes tavak előfordulása a vízgyűjtőre vonatkozó táblázatban (8-10. melléklet) van feltüntetve és itt jelennek meg az állapotuk javítását célzó intézkedések is.

Ütemezett intézkedéseket kizárólag vízfolyás és tó víztestre vonatkozóan adtunk meg. A vízgyűjtőn megjelenített intézkedések zömükben megegyeznek a vízfolyásokra vagy tavakra
vonatkozóakkal, az hogy azok a víztesten vagy a vízgyűjtőn valósulnak-e meg az intézkedések jellegétől függ. A hidromorfológiai beavatkozások értelemszerűen inkább a víztestet érintik, míg a területhasználatra vonatkozók inkább a vízgyűjtőt.

Az intézkedések tervezése

Az intézkedések tervezésének alapját a természeti értékei miatt védett területek 6. fejezetben bemutatott állapotértékelése és a Nemzeti Park Igazgatóságok 2015-ös adatszolgáltatása képezi. A területi természetvédelmi szakemberek Natura 2000 területenként és vízfolyásonként megfogalmazták a legégetőbb vízzel összefüggő természetvédelmi problémákat, a tervezett intézkedések e problémák kezelését célzozzák.

8.3.8 A fürdésre kijelölt vízekre vonatkozó intézkedések

A fürdőhelyek védelmét biztosító intézkedési csomagba az alábbi intézkedések tartoznak:

- **35.1 Az EU Fürdővíz Irányelv szerinti szabályozás**
- **35.2 A kötelező műszaki feltételek, védősav, maximális vendégszám, szennyezőanyag terhelés, ellenőrzési és működtetési feltételek szabályozása**
- **35.3 A strandok kijelölése és üzemeltetése során a partszakasz fürdővíz minőségi és ökológiai állapotára vonatkozó követelmények figyelembevétele**

Az intézkedések a természetes fürdők kialakításának, működtetésének és megszüntetésének ökológiai és közegészségügyi feltételeire vonatkoznak. Ily módon az intézkedések meghatározzák azokat az ökológiai és közegészségügyi szempontból is megfelelő intézkedéseket, amelyek alkalmassak arra, hogy a 78/2008. (IV.3.) Korm. rendeletben rögzített a természetes fürdővizek minőségi követelményeivel, valamint a természetes fürdőhelyek kijelölésével és üzemeltetésével kapcsolatban meghatározottak és a VKI ökológiai elvárásai együttesen tudjanak érvényesülni.

Az intézkedések célja a strandok kijelölése és üzemeltetése során a partszakasz fürdővíz minőségi és ökológiai állapotára vonatkozó követelmények összehangolt figyelembevétele.

A természetes fürdőhelyen problémát okozhat a belterületről bevezetett csapadékvíz is, ezért célszerű ennek vizsgálatával is kiegészíteni a hatályos szabályozást.

A természetes fürdők megszüntetésének jogi környezetét a vonatkozó kormányrendelet nem rögzíti ezért itt jogszabály módosításra van szükség.
8.4 Az éghajlatváltozás hatásainak kezelése

8.4.1 Az IPCC 5. jelentése, 2014

Kormányközi Panel a Klímaváltozásról (IPCC) munkacsoportja 2014 márciusában közzétette 5. jelentését. Ennek legénységesebb megállapítása, hogy a rendelkezésre álló, nagyszámú háttértanulmány alapján 95%-os bizonyossággal az emberi tevékenység áll az utóbbi fél év században tapasztalt jelentős globális átlaghőmérséklet-emelkedés háttérében. Ez azért fontos előrelépés, mert a korábbi jelentések nem foglaltak ennyire egyértelműen állást az okokat illetően, ami teret adott a kétkedők számára, illetve hivatkozási alapot azoknak az országoknak, amelyek mindig nem tettek megfelelő intézkedéseket a CO2 kibocsátás csökkentése érdekében. A CO2 kibocsátás szabályozása és módosítása azonban kívül esik a vízgazdálkodás hatáskörén, ezért az éghajlatváltozás ebben a relációban hajtóerőnek tekinthető.

A CO2 kibocsátására vonatkozó forgatókönyveket pontosították, és ennek eredményeképpen számtettevében csökkent a hőmérséklet-változás útemérére vonatkozó előrejelzés. Míg a 4. jelentésben a globális hőmérsékletváltozást a XXI. században a forgatókönyvek függvényében kb. 0,2 – 0,4 °C/évtized értékre becsülték, addig az 5. jelentésben ez 0,12 – 0,2 °C/évtizedre mérséklődött. Az eddigi észlelések alapján Magyarországra a globálisnál mintegy 20 %-kal nagyobb értékek jellemzők.

A csapadékra továbbra is érvényes a területek és az évszakok közötti átrendeződés. Az új jelentés alapján lényegében nem változott a korábbi becslés, miszerint Magyarországra a jelenleginél csapadékosabb tél és szárazabb nyár lesz jellemző, jelentős szélsőségekkel. További fontos megállapítás, hogy folytatódni fog az Északi-Sark jégsapkájának csökkenése, sőt akár teljes eltűnése is bekövetkezhet. Ez látszólag távoli probléma számunkra, ugyanakkor gyorsan (néhány év alatt) a jelenlegitől karakteresen eltérő időjárási viszonyok alakulhatnak ki és ez érintheti a Kárpát medencét is.

A jelentés alapján levonahtó fontos következtetés, hogy Magyarországon az enyhébb hőmérsékletváltozás miatt kisebb potenciális evapotranszpiráció kedvező lesz a kisvízi készletek és főként a felszín alatti beszivárgás szempontjából. Ugyanakkor a szélsőséges események (aszályok, extrém árvizek) megjelenésére továbbra is számítani kell, sőt ezek mértéke és gyakorisága tovább növekedhet.

8.4.2 EU Blueprint, Az európai vízkészletek megőrzésére irányuló stratégiai terv, 2012

A növekvő vízigenyek és az éghajlatváltozás kedvezőtlen együttes hatása jelentős vízhiányhoz vezethet. Ezt felismere az EU egy stratégiai tervet adott ki, amelynek célja a vízkészletek fenntartható használatának elősegítése, az ezt akadályozó körülmények elhárítása.

A jelenlegi és a jövőben várható hátrányos tényezők között szerepel az éghajlatváltozás hatása is, amely egyaránt beolylásolja az igényeket és a készleteket. Európa középső és déli régióiban a vízigenyek növekedése csökkenő készletekkel párosul. A magasabb hőmérséklet, főként kánikulai időszakokban, vízminőségi problémákhoz vezethet, az extrém csapadékok pedig növelik az erózióval illetve lefolyással távozó tápanyag mennyiségét.
Ez a helyzet jelentősen növeli a vízkészletek mennyiségi és minőségi sérülékenységét, amelyre elsősorban alkalmazkodással kell válaszolni. Növelni kell az ökoszisztémák ellenállóképességét, az ökoszisztéma szolgáltatások megőrzését, sőt hatékonyabb hasznosítását. Jobban ki kell használni a természetes vízvisszatartás lehetőségeit, valamint a környezetbarát infrastruktúrák alkalmazását (kevés vízet igénylő, és a vizeket nem szennyező zöld fejlesztések!).

A vízigények ésszerűsítése érdekében a költségmegtérülésen alapuló megfelelő árpolitikát kell kialakítani, ötvözve egyéb ösztönzőkkel, amelyek elősegítik a terület adottságainak megfelelő földhasználatot, illetve víztakarékos technológiák és eszközök alkalmazását. A vízhiány enyhítése vízátvezetésekkel csak akkor javasolt, ha a vízigény oldalon már minden lehetőség kimerült és létesítsük megfelelő infrastruktúrát és a környezetbarát infrastruktúrák a vízhatékonyság és a vízminőség javítása érdekében.

A stratégiai terv, ahol lehet, közös végrehajtási stratégiák kidolgozását feltételezi, annak érdekében, hogy szerepvállalásra ösztönözzön és elősegítse a Bizottság javaslatainak végrehajtását. Ebben az integrációban jelentős szerepe van a vígyűjtő-gazdálkodási tervek végrehajtásának és az ehhez kapcsolódó széleskörű társadalmi egyeztetési folyamatoknak.

8.4.3 Az éghajlatváltozás hatásaival foglalkozó hazai stratégiák

Nemzeti Aszály Stratégia, 2012

Az éghajlatváltozás szerepével kapcsolatban megállapítja, hogy az növeli az aszályos időszakok gyakoriságát és időtartamát (részletes elemzést tartalmaz az aszály mértékének értékeléséről).

Az aszálykezelés jogi háttérének szerepére a VKI-t ajánlja, amely a vizek jó állapotának előrészét tűzi ki célul, és ez magába foglalja az ökoszisztémák megfelelő működését is, ami az aszályhoz való alkalmazkodás egyik fontos eleme. A VKI előírja a takarékos vízhasználatok elősegítését szolgáló árképzést, és a takarékos vízhasználatok egyéb ösztönzését is. A VKI szigorú előírásokat tartalmaz a tervezett beavatkozás indoklásával kapcsolatban, ami biztosítja a fenntartható megoldások alkalmazását.

A VKI szerepéből adódóan a javasolt intézkedések egyik csoportját a VGT1-ben leírt intézkedések adják: vízkivételek szabályozása, vízvisszatartás különböző formáinak növelése, belvízcsatornák megszaporulhatásának csökkentése, tározók ökológiai szempontú üzemeltetése, takarékos vízhasználatok elősegítése, az igénygazdálkodás erősítése. Kiemeli továbbá a tágasztalódás jelentőségét. Ezek az intézkedések a VGT2-ben is megjelennek (lásd 8.5.4. fejezet).
Második Nemzeti Éghajlatváltozási Stratégia, 2014 – 2025, kitekintéssel 2050.re

A Második Nemzeti Éghajlatváltozási Stratégia (NÉS) 2013-ban kiadott tervezete (parlamenti elfogadásra baterjesztve) a vizeket érő hatások értékelésében és a vízgazdálkodást érintő feladatok kidolgozásában figyelembe veszi az MTA Magyarország vízgazdálkodása: helyzetkép és stratégiai feladatok c anyagában közölt elemzéseket, illetve az EU e témával foglalkozó dokumentumait, különösen az előző pontban tárgyalt „Blueprint” ajánlásait.

Megállapítja, hogy az éghajlatváltozás növeli a vízellátás a hazai vizek sérülékenységét (ezzel együtt a vízhiánnyal kapcsolatos kockázatot), amit alapvetően az egyéb emberi hatások (területhasználat, vízigény, vízkivételek) határoznak meg. A sérülékenység elsősorban alkalmazkodással csökkenthető.

A stratégia részletesen elemzi az éghajlatváltozásnak a vízgazdálkodási ágak működésében gyakorolt hatását, és megállapítja, hogy:

- Az átlagos évi lefolyás folyóink többségén csökken, éven belüli eloszlása változik (télen nő, nyáron csökken). Ennek következtében a hasznosítás szempontjából lényeges kisvízi hozamok is csökkennek.
- A szélsőséges csapadékesemények hatására gyakoribb váltnak az extrém árvizek: a kis vízfolyásokat érő "villámárvizek" és a nagy folyókon levonuló árhullámok egyaránt.
- A nagytavak vízmérlege romlik, gyakoribb váltnak a tartós alacsony vízállások.
- A beszivárgás csökken. Kevesebb lehet a felszín alatti vizek természetes utánpótlása, hosszab távon módosíthatja a felszín alatti áramlási rendszereket.
- A talajvízszint süllyedés és a talaj romló nedvességellátottsága növeli az aszályhajlamot és nő az aszályos évek gyakoriságát, az aszály a mainál nagyobb térségre terjedhet ki.
- A belvizek alakulása bizonytalannak, várhatóan szélsőségesse válék.
- A vízhőmérséklet emelkedik, kánikulák idején gyors vízminőségromlás (oxigénhiány) léphet fel, a jégjelenségek csökkennek.
- A csökkenő kisvízhozam,, tartósan alacsony tóvízzint, süllyedő talajvízszint károsan érinti a tőlük függő okozisztémák állapotát.

Ezek a hatások befolyásolják a különböző vízgazdálkodási ágak működését. A VGT szempontjából elsősorban (közvetlenül) a vízkészlet-gazdálkodás és a vízminőségszabályozás problémái, feladatai érdekesek, de tekintve, hogy a VGT közvetve minden olyan emberi tevékenységgel foglalkozik, ami a vizek állapotát befolyásolja (terhelésként jelenik meg), gyakorlatilag valamennyi vízgazdálkodási ágra kiterjed. A vízgazdálkodást számos egyéb tényező befolyásolja és az éghajlati és egyéb hatások nehezen választhatók szét, a következő lista a domináns éghajlati hatásokat adja meg:

- vízkészlet-gazdálkodás: csökkenő készletek, növekvő igények
- vízminőség-szabályozás: kánikula idején romló vízminőség, növekvő érzékenység hűtővíz bevezetésekre, változó szennyezésvízminőség, extrém csapadékok idején nagyobb tápanyag- és hordaléklemosodás, gyengülő regenerálódó képesség (szennyezőanyag-levontás), kisvíz idején rosszabb hígulási viszonyok
területi vízgazdálkodás: gyakoribb aszály, növekvő öntözési vízigény, ritkuló, de extrém mértékű belvizek

települési vízgazdálkodás: változó csapadékmennyiség és minőség, fokozott szennyezőanyag lemosódás

rekreáció: alacsony vízszintek, rosszabb vízminőség,

vízenergia termelés: kisebb vízhozam, a csúcsrajáratás nagyobb veszéllye,

hajózás: tartós kisvízi viszonyok, kotrás kényszer vagy szabályozási, duzzasztási igény

A fentiekben felsorolt problémák kezelésére a NÉS szerkezeti és nem szerkezeti intézkedéseket egyaránt javasol. Ezek között szerepel az ökoszisztémák állapotának javítása, ökoszisztéma szolgáltatások erősítése, vízvisszatartás, vízigény szabályozás, határértékek módosítása, bizonyos tevékenységek tiltása illetve korlátozása, területhasználat módosítása, eróziócsökkentés, vízszintszabályozás, víztisztítás, vízfolyások, hullámterek, árterek rehabilitációja.

A NÉS felsorolja a fenti kategóriákba tartozó konkrét stratégiai feladatokat is. Ezek részletesebb kidolgozását viszont a Nemzeti Vízstratégia, illetve a VGT hatáskörébe utalja. Az 8.5.4 fejezetben a VGT-t érintő intézkedési javaslatokat foglaljuk össze, megadva azt is, hogy ezeket melyik VGT intézkedés oldja meg.

8.4.4 Az éghajlatváltozás hatásainak kezelése a VGT-ben

A vízgyűjtő-gazdálkodási terv nem tartalmaz önálló, az éghajlatváltozás hatását mérséklő, vagy ahhoz való alkalmazkodást elősegítő külön intézkedési csomagot. Ezek a feladatok beépünek az egyéb terheléseket kezelő intézkedési csomagokba.

Az ökoszisztémák jó állapota növeli képességüket az éghajlatváltozáshoz való alkalmazkodásban, tehát általános megközelítében a VGT összes intézkedése valamilyen mértékben hozzájárul ehhez a célhoz. Kétségtelen viszont, hogy az éghajlatváltozás, a NÉS-ben említett vízgazdálkodási hatásai miatt, sok tekintetben nehezít a VGT-ben szereplő jó állapot vagy jó potenciál teljesítését: rontja a vizek állapotát, illetve növeli a 8.2.2 fejezetben összefoglalt terheléseket.

A kapcsolat fordítva is létezik, az ökoszisztémák jó állapota növeli a környezet adaptációs képességét (pufferkapacitását) a szélsőségesebb meteorológiai viszonyokhoz, azzal, hogy több vizet képes megtartani a területen, illetve megszűri és feldolgozza a szennyezőanyagokat.

A következőkben felsoroljuk, hogy a fenti dokumentumokban jelzett, az éghajlatváltozás hatásaihoz való alkalmazkodást vagy a következmények csökkentését célzó intézkedések hogyan jelennek meg horizontálisan a VGT2 tervezetében.

- vízkivételek szabályozása,
- takarékosságra ösztönző gazdasági eszközök,
- az igénygazdálkodás erősítése, vízígény szabályozás takarékos vízhasználatok elősegítése,
- vízvisszatartás különböző formáinak növelése, (belvízcsatornák megcsapoló hatásának csökkentése),

8. fejezet Intézkedési program – 229 –
turuléhasználat módosítása, eróziócsökkentés,
ökosszisztémák állapotának javítása, ökoszisztéma szolgáltatások erősítése, vízfolyások, hullámterek, árterek rehabilitációja,
tározók ökológiai szempontú üzemeltetése,
bizonyos tevékenységek tiltása illetve korlátozása,
szennyvízkibocsátás határértékeinek módosítása,
vízszintszabályozás,
vízpótlás,
árvízi kockázat csökkentése az ökológiai szempontok figyelme vételével

A VGT hatévenkénti felülvizsgálati ciklusai lehetővé teszik az intézkedések módosítását, kiegészítését, vagyis a menetközben pontosabbá váló ismeretekhez, hatásokhoz való rugalmas alkalmazkodást (lásd pontosabb CO₂ szcenáriókból származó kisebb előre jelzett hőmérsékletnövekedés).

Az éghajlatváltozás, mint általában (horizontálisan) megjelenő hatást kell figyelembe venni a vízgazdálkodást érintő tervezésben (nem csupán a VGT-ben szereplő intézkedések esetében, hanem általában, pl. árvízvédelmi vagy vízellátási projektek esetében is). Kétségtelen, hogy az éghajlatváltozás bizonytalan ismerete növeli a tervezés bizonytalanságát is. Vizsgálni kell, hogy ez milyen mértékű, nem teszi-e bizonytalanává a projekt célkitűzését, illetve milyen rugalmas megoldásokat kell alkalmazni, hogy a bizonytalanság később kezelhető legyen.

Az éghajlatváltozáshoz való alkalmazkodás elősegítéséhez felsorolt intézkedések mindig megegyeznek valamilyen más, éghajlatváltozás nélkül is fennálló terhelés csökkentését, megszüntetését szolgálja. Ezek esetében az éghajlatváltozás hatásainak kezeléséhez való hozzájárulás olyan pozitívum, amit figyelembe kell venni az adott intézkedés kiválasztásakor, illetve ütemezésekor.

8.5 Az árvízi kockázat kezelési terv és a VGT kapcsolata

Az árvízkockázatok értékeléséről és kezeléséről szóló 2007/60/EK irányelv (röviden Árvíz Irányelv, illetve ÁI) célja az EU tagállamok árvízmegelőzéssel és árvizek elleni védelemmel kapcsolatos tevékenységének összehangolása, szabályozása. Megvalósítása, azaz az árvízkockázat-kezelési tervek készítése szorosan kapcsolódik a Víz Keretirányelv (VKI) teljesítségéhez, illetve a vízgyűjtő-gazdálkodási tervek készítéséhez. A két terv összehangolása az EU által rögzített kötelezettség.

Magyarország Árvízkockázat-kezelési Terve külön projekt keretében készült el, párhuzamosan a VGT-vel. A két terv összehangolása több lépésben, illetve több szempont figyelembevételével történt.

ÁKK intézkedések általános elemzése a VKI és a VGT megvalósítása szempontjából

Az ÁKK 17 szerkezeti intézkedés típushat definitív, amelyeknek a VKI, illetve a VGT szerinti elemzése a következő szempontok szerint történt (OVGT 8-17 melléklet):

- A VKI szempontjából kedvező hatások
Vízgyűjtő-gazdálkodási Terv - 2015
Balaton részvízgyűjtő

- A VKI szempontjából kedvezőtlen terhelések, hatások
- Lehetséges hatáscsökkentő és kompenzációs intézkedések
- A VGT szerint ajánlott jó gyakorlatok
- Természetvédelmi szempontok

Az értékelés célja annak feltárása, hogy melyek a VGT megvalósításához hozzájáruló ÁKK intézkedések, illetve azok, amelyek megvalósítása árvízi szempontból szükséges lehet, azonban a vizek ökológiai állapotára kedvezőtlen hatással van. Az ÁKK intézkedési típusok elemzése kiterjed arra is, hogy az utóbbi esetben milyen hatáscsökkentő, illetve kompenzációs intézkedésekkel lehet csökkenteni a kedvezőtlen hatásokat. A tervezés során a VGT szerint ajánlott jó gyakorlatok és a természetvédelmi szempontok figyelembevétele erősíti a kedvező hatásokat és enyhíti a kedvezőtleneket. A természetvédelmi szempontok azért jelennek meg, mert a VKI szerint a NATURA 2000-es területeken a természetvédelmi előírások a jó állapot kritériumait jelentik.

Ahol az ÁKK intézkedések a hidromorfológiai és időnként a vízminőségi állapotot javítják, ott hozzájárulnak egyes, a VGT-ben szereplő intézkedések megvalósításához, illetve az ÁKK szempontjából előnyös VGT intézkedések értelemzéséről közvetlenül mindkét irányelv célkitűzésének együttes megvalósítását jelentik. Az ÁKK intézkedések egy része tehát nem közvetlenül épülnek be a VGT-be, hanem valamely VGT intézkedés részeként (8-7 melléklet).

Mindkét esetre érvényes, hogy a vizsgálatoknak igazolniuk kell, hogy megtörténtek vagy tervben vannak a kedvezőtlen hatások mérséklését szolgáló kiegészítő intézkedések. Ezek általában olyan ún. hatáscsökkentő intézkedések, amelyek az ökoszisztéma sérült funkciját igyekeznek helyettesíteni, esetenként olyan hatékonyan, hogy a jó állapot/potenciál a beavatkozás ellenére elérhető. Az intézkedések rendszerében (8.3.4 fejezet) a kiegészítő intézkedéseket 3 számjegyű kódok különböztetik meg.

Az ÁKK intézkedések között vannak olyanok, amelyek esetében a megvalósítástól és a konkrét helyszíntől is függ, hogy az intézkedés hatása kedvező vagy kedvezőtlen (esetleg semleges) a vizek állapotára. Ezért kiemelt jelentősége van az ökológiai szempontú jó gyakorlatokat is figyelembe vevő tervezésnek minden vízgazdálkodási beavatkozásnál.

A 8-16 táblázat az ÁKK és a VGT intézkedések kapcsolati rendszerét mutatja be. A táblázat tájékoztatást ad arról, hogy az egyes ÁKK intézkedés típusok, az alkalmazástól függően, mely VGT intézkedések megvalósításában vehetők figyelembe, illetve milyen, a vizek állapotát kedvezőtlenül befolyásoló hatások léphetnek fel, és ezek csökkentésére milyen kiegészítő intézkedések alkalmazhatók. A táblázatban szereplő VGT intézkedésekről bővebb információk találhatók a 8-3 mellékletben, valamint az OVGT 8-4 mellékletben.

8-8. táblázat: ÁKK és VGT intézkedések kapcsolata

<table>
<thead>
<tr>
<th>ÁKK intézkedés</th>
<th>Kapcsolódó VGT intézkedések</th>
<th>Hatáscsökkentő intézkedések</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ártéri, hullámtéri területhasználatok módosítása, művelési ág változással, ökológiai és természetvédelmi szempontok figyelembevételével</td>
<td>Szántó → gyep vagy erdő konverzió esetén: 6.2 Mederforma és a növényzónának (parti zóna, hullámtér/ártér) rehabilitációja a jó állapot fenntartása 17.8 Vízfolyások és tavak melletti partmenti védőszakok kialakítása gyepezetéssel vagy agrár-erdészeti módszerrel (összehangolás a parti növényzónák rehabilitációjával, árvízvédelmi és fenntartási szempontok figyelembevételével</td>
<td>Nagyarányú erdő → gyep konverzió esetén 4.1.1 terhelés típus: a parti sáv, hullámtér módosítása 6.5.3 A parti növényzóna állapotának javítása az árvízvédelmi követelményekkel összehangolva (a jó ökológiai potenciál nálak megfelelő viszonyok elérése). 6.5.5 Kompenzációs hullámtéri erdősítés áramlási holtterekben, az erdősítés jó gyakorlatának kidolgozása, természetvédelmi szempontok figyelembevételével</td>
</tr>
<tr>
<td>2. A növényzet átalakítása és fenntartása, ökológiai és természetvédelmi szempontok figyelembevételével</td>
<td>A víztípusnak megfelelő parti növényzóna megtartása és a hullámtéri növényzet diverzitásának növelése esetén: 6.2 Lásd 1. ÁKK intézkedés 6.12 Belterületi vízfolyás partszakaszkok rehabilitációja a települési funkciókkal összehangban 17.8 Lásd 1. ÁKK intézkedés</td>
<td>A parti növényzet: irtása, puffer zóna hiánya és homogén hullámtéri növényzett esetén 4.1.1 terhelés típus: a parti sáv, hullámtér módosítása 6.5.3 Lásd 1. ÁKK intézkedés 6.5.5 Lásd 1. ÁKK intézkedés</td>
</tr>
<tr>
<td>3 Mederkotrás, zátonyrendezés</td>
<td>Ha a kotrás célja a felhalmozódott iszap eltávolítása, a természetes</td>
<td>Ha a meder méreteinek növelése, trapézmeder kialakítása: 4.1.1 terhelés</td>
</tr>
</tbody>
</table>
ÁKK intézkedés | Kapcsolódó VGT intézkedések | Hatácsökkentő intézkedések
--- | --- | ---
meder helyreállítása | | típus: mederforma módosítása, illetve
6.2 Lásd 1. ÁKK intézkedés | 6.5.4 Hullámtér rendszeres előírása, hullámtéri mellékágak holtágak összekapcsolása, vízpótlása, mesterséges vápák, ivadéknevelő helyek kialakítása, hullámtér lokális szélesítése
6.3 Az oldalirányú átjárhatóság rehabilitációja: töltések bontása (nyílt árter kialakítása), áthelyezése (hullámtér szélesítése a jó állapotnak megfelelően), hullámtéri és mentett oldali holtágak és mellékágak vízellátása | 6.11.3 Kotrás korlátozása, különös tekintettel parti szűrésű vízbeszerzésre alkalmas mederszakaszokon,
6.12 Belterületi vízfolyás partszakaszok rehabilitációja a települési funkciókkal összhangban | 6.5.1 Trapézmeder forma természetesabb tétele, kotrás korlátozása (lásd a 6.10.3 intézkedést is), amilyen mértékben az árvízi levezető kapacitás biztosítása ezt megenségi, a jó potenciálának megfelelő fenntartás
4a.2 Szennyezett üledék egyszeri eltávolítása vízfolyásból vagy állóvízből | | Parti szűrésű szakasz üledékének kotrása miatt: 7.3 terhelés típus: ivóvízbázis szennyezése
Ha a hullámtéri holtágak-mellékágak vízellátásának biztosítása | 13.2 Ivóvízbázisok védelme, védőzónák kijelölése, tevékenységek szabályozása, módosítása (A diagnosztikai és a biztonsága helyezési program végrehajtása
6.12. Belterületi vízfolyás partszakaszok rehabilitációja a települési funkciókkal összhangban | 6.11.3 Kotrás korlátozása, különös tekintettel parti szűrésű vízbeszerzésre alkalmas mederszakaszokon,
6.12 Belterületi vízfolyás partszakaszok rehabilitációja a települési funkciókkal összhangban | 6.5.1 Trapézmeder forma természetesabb tétele, kotrás korlátozása (lásd a 6.10.3 intézkedést is), amilyen mértékben az árvízi levezető kapacitás biztosítása ezt megenségi, a jó potenciálának megfelelő fenntartás
Ha a hullámtéri holtágak-mellékágak vízellátásának biztosítása | | Parti szűrésű szakasz üledékének kotrása miatt: 7.3 terhelés típus: ivóvízbázis szennyezése

| 4 Víztározás, vízvisszatartás a mederben | Ha az árvízcsúcs csökkenése miatt kedvezőbb lehet az alvízi víztest ökológiai potenciálja | Ha a tározó nem megfelelő helyen épült 4.2.2 terhelés típus: Gátak
6.2 Lásd 1. ÁKK intézkedés | 5.1.1 Hallépcső, megkerülő csatorna
Ha a tározó vízleeresztése nem megfelelő (nem árvízi ok) 4.3.4 terhelés: | Ha a tározó vízleeresztése nem megfelelő (nem árvízi ok) 4.3.4 terhelés: 7.3.1 Völgyzárógátas tározókból történő leeresztés szabályozása
23.2 Vízvisszatartás tározással dombvidéki területeken, kisvízfolyásokon záportározókban, esetleg állandó tározókban | 7.3 terhelés típus: ivóvízbázis szennyezése

| 5 Árhullám csökkentés oldaltározóban, szükségtározóban | Ha rendszeres az előírás, és a tározott mennyiség felhasználása vízpótlásra, valamint az árvízcsúcs csökkenése miatt kedvezőbb lehet az alvízi víztest ökológiai potenciálja | nincs
Ha rendszeres az előírás, és a tározott mennyiség felhasználása vízpótlásra, valamint az árvízcsúcs csökkenése miatt kedvezőbb lehet az alvízi víztest ökológiai potenciálja | nincs

| 6 Töltés áthelyezés | Ha az új hullámtéri terület területhasználata megfelelő | nincs
6.3 Lásd 3. ÁKK intézkedés | nincs

<table>
<thead>
<tr>
<th>ÁKK intézkedés</th>
<th>Kapcsolódó VGT intézkedések</th>
<th>Hatáscsökkentő intézkedések</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Töltésmagasítás, erősítés</td>
<td>semleges</td>
<td>Meglévő töltés esetén nem megoldott mentett oldali vízpótlás: 6.5.6 Töltések esetén mentett oldali vízpótlás</td>
</tr>
<tr>
<td>8 Új töltés/depónia építése</td>
<td>nincs</td>
<td>A ártér egy részének levágása miatt 4.1.1 terhelés típus: a hullámtér módosítása 6.5.6 Töltések esetén mentett oldali vízpótlás</td>
</tr>
<tr>
<td>9 Árapasztó csatorna kialakítása, fenntartása</td>
<td>Ha a csökkenés ökológiai potenciált javít 6.2 Lásd 1. ÁKK intézkedés 6.12 Lásd 3. ÁKK intézkedés 6.5.6 Töltések esetén mentett oldali vízpótlás</td>
<td>Ha nem megfelelő a vízmegosztás 4.3.8 terhelés típus: változás a vízjárásban 7.4.3 Vízmegosztás nem árvízi időszakban, ill. az ökológiai kisvíz biztosítása mindkét ágban</td>
</tr>
<tr>
<td>10 Folyósabályozási művek átépítése</td>
<td>Az átépítés mértékétől függő hatásossággal: 6.1 Hosszirányú szabályozás csökkentése (partvédő művek elbontása a meder oldalirányú fejlődésének biztosítása), 6.9 Kis- és középvízi mederszabályozás felszámolása (sarkantyúk, mederbiztosítások, partvédő művek bontása)</td>
<td>Jelenlegi terhelések hatáscsökkentő intézkedései: 6.5.7 Szabályozási művek átépítése 6.11.2 Sarkantyúk átalakítása, feliszapolódás eltávolítása parti szűrésű vízbeszerzésre alkalmas szakaszokon</td>
</tr>
<tr>
<td>11 Lefolyási akadályok (hidak, kikötők, utak, vasutak, egyéb építmények) felülvizsgálata, átalakítása, elbontása</td>
<td>Különösen, ha hosszirányú átjárhatóságot akadályoz 6.4 Árvízi kockázatkezelési szempontból felesleges műtárgyak bontása, a mederszakasz rehabilitációja 6.10 Kikötők átalakítása</td>
<td>nincs</td>
</tr>
<tr>
<td>12 Hullámtéri mellékágak és holtágak rehabilitációja, mesterséges (ún. vápa) kialakítása</td>
<td>Ha holtág, mellékág vagy mély vápa 6.3 Lásd 3. ÁKK intézkedés</td>
<td>nincs</td>
</tr>
<tr>
<td>13 Nyári gátak és depóniák elbontása (részleges is)</td>
<td>6.3 Lásd 3. ÁKK intézkedés</td>
<td>nincs</td>
</tr>
<tr>
<td>ÁKK intézkedés</td>
<td>Kapcsolódó VGT intézkedések</td>
<td>Hatáscsökkentő intézkedések</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>14 Övvátony rendezés</td>
<td>Ha szakaszos bontás, megníttás: 6.2 Lásd 1. ÁKK intézkedés 6.3 Lásd 3. ÁKK intézkedés</td>
<td>Ha jelentős a parti növényzet eltávolítása, 4.1.1 terhelés típus: parti sáv/hullámtér módosítása 6.5.1 Lásd 3. ÁKK intézkedés 6.5.3 Lásd 1. ÁKK intézkedés</td>
</tr>
<tr>
<td>15 Kanyarulatrendezés</td>
<td>Ha a levágott holtág élő marad, és növeli a diverzitást: 6.3. Lásd 3. ÁKK intézkedés</td>
<td>Ha akadályozza az oldalirányú mozgást, 4.1.1 terhelés típus: ... vonalvezetés/ mederforma/ parti sáv módosítása 6.5.2 Mederátvágás megfelelő vonalvezetéssel és mederformával, 6.5.4 Lásd 3. ÁKK intézkedés</td>
</tr>
<tr>
<td>16 Mederstabilizáció</td>
<td>nincs</td>
<td>4.1.1 terhelés típus: vonalvezetés/ mederforma/ parti sáv módosítása nincs hatáscsökkentő intézkedés</td>
</tr>
<tr>
<td>17 Üdüöterületek rendezése</td>
<td>Ha a területhasználatot is érinti: 6.4 Lásd 11. ÁKK intézkedés 21.4 Települési eredetű, belterületi növénytermesztésből, állattartásból, közterületekről származó terhelések csökkentése 21.5 Illegális hulladékkerákók felszámolása, a hulladékkerákás ellenőrzése, bírságolása</td>
<td>nincs</td>
</tr>
</tbody>
</table>

A VGT teljesítését támogató intézkedések az ÁKK-ban

Az ÁKK Terv valamennyi, az intézkedés típusok konkrét, folyószakasz és cél szerint specifikált alkalmazásainak (számuk kb. 1500) egyedi értékelése alapján kiválogathatók voltak azok az esetek, ahol az ÁKK intézkedés javítani fogja a vízfolyás hidromorfológiai viszonyait (várhatóan ökológiai állapotát is), megkülönböztetve a lokális és a víztest szintű hatásokat.

A VGT Intézkedési Programja jelzi, hogy ilyen „win-win” intézkedések hol járulnak hozzá a VGT intézkedések megvalósításához.

A 2020-ig megvalósuló, ÁKK intézkedések bemutatása

Kiemelt jelentősége van azoknak az ÁKK intézkedéseknak, amelyeket a Környezeti és Energia Operatív Program (KEOP) keretében tervezték, de a Környezeti és Energiahatékonysági Operatív Program (KEHOP) időszakában fejeznek be, illetve a KEHOP által támogatott projektek keretében tervezték, és várhatóan 2020-ig megvalósulnak.
A KEHOP-ban program szintű követelmény, hogy a projekteknek az árvíz irányelv mellett a VKI követelményeit is figyelembe vegyék és a projektek tartalmazzanak a VGT-ben szereplő intézkedéseket. Ez az elvárás megfelel annak az elvnek, hogy a VKI érvényesítése olyan horizontális elv, amely jöreszt a különböző ágazati projektek keresztül valósul meg, azzal, hogy a vizek állapotának javítása általános szempont és feladat.

A tervezett intézkedések közül a VGT szempontjából azoknak van jelentősége, amelyek kedvező hatással vannak a vizek állapotára. Ezek esetében a vonatkozó VGT intézkedés (vagy annak egy része) a VGT Intézkedési Programjában a 2021-ig megvalósuló intézkedések között szerepel. A vizek állapotára várhatóan kedvezően hatással bíró ÁKK intézkedések esetében a VGT bemutatja a szükséges/lehetséges hatáscsökkentő, illetve kompenzációs intézkedéseket is. (Ez a 4.7 cikk szerinti vizsgálatok előkészítését szolgálja, az intézkedési programban nem jelenik meg.)

Az egyes, teljesen vagy részben árvízkockázattal foglalkozó KEHOP projektek VGT szempontú bemutatása, adatlapok formájában, a négy részvízgyűjtő-gazdálkodási tervhez kapcsolódó alegységekben jelenik meg.

8.6 Rendelkezésre álló források 2014-2020

8.6.1 A Balaton Területfejlesztési Stratégiai Program keretében rendelkezésre álló források

8-9. táblázat: Balatoni vízminőségi és biztonsági fejlesztések a KEHOP forrásasiból

<table>
<thead>
<tr>
<th>Vízvédelmi intézkedés</th>
<th>Összeg Mrd Ft</th>
<th>KEHOP prioritási tengely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balaton vízminőségi állapotát befolyásoló külső terhelések, szennyezések csökkentése, a tó jó állapotának biztosításához szükséges intézkedések megvalósítása</td>
<td>1</td>
<td>KEHOP 1</td>
</tr>
<tr>
<td>Hévízi-tó átfogó tővédelmi programjának megvalósítása</td>
<td>1,5</td>
<td>KEHOP 4</td>
</tr>
<tr>
<td>Sió-csatorna felújítása – természetvédelmi célú beavatkozások, meder-rehabilitáció, Sió-zsilip rekonstrukció</td>
<td>12</td>
<td>KEHOP 1</td>
</tr>
<tr>
<td>Balatoni Szennyvízkezelési Program megvalósítása</td>
<td>2,2</td>
<td>KEHOP 2</td>
</tr>
<tr>
<td>Egységes megfigyelő-, tájékoztatási és döntéstámasztó rendszer fejlesztése – VKI-hoz kapcsolódóan</td>
<td>1</td>
<td>KEHOP 1</td>
</tr>
<tr>
<td>Katasztrófavédelmi rendszerek fejlesztése a Balaton régió területén</td>
<td>2,5</td>
<td>KEHOP 1</td>
</tr>
</tbody>
</table>
8.6.2 A Vidékfejlesztési Program támogatási rendszere

A 2014-2021-ig a Vidékfejlesztési Program (továbbiakban VP) forrásai szolgálják a VGT intézkedéseket is.

A vízvédelmi célokat is szolgáló (diffúz és pontszerű) szennyezés csökkentési intézkedésekre (az agrárkörnyezet-gazdálkodási, a művelési ág- és módváltás, állattartó telepek) összességében a VP 536 Mrd forint keretösszeget allokált, ami az ÚMVP-ben szereplő összegnél (663 Mrd Ft) 19 %-kal alacsonyabb.

8.6.3 Magyar Halászati Operatív Program támogatási rendszere

A MAHOP fő célja a fenntartható fejlődés mellett a lakosság magas színvonalú haltermékekkel való ellátása (a halfogyasztás folyamatos növelése) és az ágazat, elsősorban kkv szereplőinek hosszú távú megélhetésének biztosítása. Ugyancsak cél a természetes vizeink halállományának növelése és a biodiverzitás megőrzése. A VGT intézkedésekhhez az 1. prioritástengely kapcsolódik a leginkább.

1. prioritástengely: A fenntartható és erőforrás-hatékony halászat és akvakultúra előmozdítása, beleértve az ezekhez kapcsolódó feldolgozást is

Alprioritások:

a) a vízi biodiverzitás és ökoszisztémák védelme és helyreállítása
b) az akvakultúrához köthető ökoszisztémák fejlesztése és az erőforrás-hatékony akvakultúra előmozdítása
c) a magas szintű környezetvédelmet, állat-egészségügyet és jólétet, illetve közegészségügyet szolgáló akvakultúra elő-mozdítása

Prioritástengelyben tervezett specifikus cél(ok) megnevezése:

1. Fenntartható és erőforrás hatékony halgazdálkodás a természetes vizeken
2. Jó állapotú vízi- és vizes élőhelyek, egészséges és stabil halállományok, magas szintű biológiai sokféleség

8.6.4 KEHOP támogatási rendszere

A KEHOP első négy prioritástengelye kapcsolódik a VKI intézkedésekezhez, azonban különösen az 1. és a 2. tengely, amelynek részesletes intézkedéseként tervezett forrását az alábbi táblázat tartalmazza.
Az árvízi kockázat mérséklésére irányuló projektek előkészítése és megvalósítása az árvízkockázatok értékeléséről és kezeléséről szóló 2007/60/EK irányelvben, a vízpolitika terén a közösségi fellépés kereteinek meghatározásáról szóló 2000/60/EK irányelvben, a Tisza-völgyben a Tisza-völgy árvízi biztonságának növelését, valamint az érintett térség terület- és vidékfejlesztését szolgáló program (a Vásárhelyi-terv továbbfejlesztése) közérdekűségéről és megvalósításáról szóló 2004. évi LXVII. törvényben foglaltak figyelembe vételével történik. A projektek a Vízgyűjtő-gazdálkodási Tervben szereplő intézkedéseket (pl. hidromorfológiai állapot javítása, kompenzációs intézkedések) is tartalmaznak.

Az árvizek kártételei elleni védekezés feltételeinek javítása keretében Magyarország domborzati, vízrajzi adottságait, a kiépített infrastruktúrát és az általa védett értékeket figyelembevevő, lehetőség szerint természetes árvízvédelmi megkölzelítést célzó megoldásokat, vagy kiegészítő intézkedéseket, a Vízgyűjtő-gazdálkodási Tervben szereplő intézkedéseket is magába foglaló fejlesztések, projektek eredményeképpen megvalósul a fejlesztéssel érintett védművek előirás szerinti kibépítéséje, új műtárgyak épülnek, illetve elavultak újulnak meg. A medrek vízlevezető képessége azok rehabilitációja, illetve rekonstrukciója eredményeképpen javul. Az árvíz szabályozott kivezetését és folyóba történő átviteli szükség szerinti visszavezetését (vagy vízhiányos területre történő átviteli szükség szerinti visszavezetését) szolgáló árvízszint csökkentését, illetve hegy- és dombvidéki tározó épülnek, illetve újulnak meg, önkormányzatok állandósított védelmi rendszerei épülnek ki.

A vízkészletekkel történő fenntartható gazdálkodás feltételeinek javítása keretében a felszín alatti vizek esetében megnövelődik a vízvásárlás kockázata, ezt megelőző intézkedések megvalósítása keretében, az édesvizek kezelésére irányuló projektek előkészítése, megvalósítása és fenntartható gazdálkodás feltételeinek javítása keretében a vízveszteség megelőzése és fenntartható vízhasználat megvalósítása keretében.
vízrendezési, vízkár-elhárítási és vízgazdálkodási problémák. A Vízgyűjtő-gazdálkodási Tervben rögzített intézkedést is tartalmazó fejlesztések, projektek révén, amelyek lehetőség szerint ökoszisztéma alapú megközelítéseket, vagy zöld megoldásokat, illetve kiegészítő intézkedéseket is tartalmazhatnak, várhatóan 1,1 millió ha-ra lő a vízgazdálkodási fejlesztéssel érintett területek nagysága, növekszik a visszatartható édesvíz mennyisége, mérsékliednek a vizek többletétől vagy hiányából származó kedvezőtlen hatások. A támogatott intézkedések hozzájárulnak a jó állapotú/ jó potenciálú víztestek arányának növekedéséhez.

A dombvidéki vízgazdálkodás fejlesztése, tározók építése tervezett fejlesztések új tárók megépítését és meglévő tárók rekonstrukcióját célozzák, amelyek alkalmazásak az árvízcsúcsok csökkentésére. A fejlesztések több céluk, a helyi igényektől és adottságoktól függően: a csapadékvíz helyben tartása, a felszíni vízvezetés, vízlelőhelyek lassítása, a dombvidéki patakok vízhozamának egyenletesítése és általános vízrendezési intézkedések következtében a víz gyűjtésének és felújításának lehetőségeit, illetve kiegészítő intézkedéseket is tartalmazhatnak, várhatóan 1,1 millió hektár nő a vízgazdálkodási fejlesztések területének nagysága, növekszik a visszatartható édesvíz mennyisége, mérséklik a vizek többletéből vagy hiányából származó kedvezőtlen hatások. A támogatott intézkedések hozzájárulnak a jó állapotú/ jó potenciálú víztestek arányának növekedéséhez.

A Víz Keretirányelv előírásainak megfelelő monitoring rendszer fejlesztése által jelentős csökkentésen a „szürke”, és adathányos felszíni víztestek száma, pontosabban váló a felszíni és felszín alatti víztestek állapotértékelése, javul az értékelések megbizhatósága.

Összefoglalóan megállapítható, hogy kizárólag olyan projektek támogathatóak, amelyek bizonyította, hogy közvetlenül a VKI célkitűzésének megvalósítása, és támogatott projektnek a vízgyűjtő-gazdálkodási tervben rögzített intézkedéseket tartalmazni kell.

A KEHOP 2. prioritástengelye, a települési vízellátás, szennyvízelvezetés és –tisztítás, szennyvízkezelés fejlesztése VKI alapintézkedéseket szolgál. Az ívövízminőség-javító program és a szennyvízprogram befejezése a 2014-2020-as időszakban, várhatóan az első felében megütemténak, a források rendelkezésre állnak a KEHOP-ban. A következő időszak fő kihívása az ívövízminőség terén az ólomprobléma megoldása, a szennyvízkezelés terén pedig a szennyvízprogramon felüli VKI követelmények teljesítése, a 2000 LE alatti települések szennyvízkezelésének megoldása. Ez utóbbira sem a KEHOP, sem a TOP nem tartalmaz forrást, hanem a VP 7.2.1 Kis léptékű szennyvíz-kezelési megoldások (2000 LE alatt) intézkedése támogatja.

A KEHOP szennyvizes fejlesztései a felszíni vizekre várhatóan vegyes hatással lesznek, döntő többségük (telekorszerűsítés) javítja a felszíni vizek minőségét, egy része megvalósítás-függő (ahol a feladat csatornázás bővítése és szennyvíztisztítás együtt, végül kis részben egyértelműen terhelést növelő (csak a csatornahálózat bővül).

Mint az előző fejlesztési ciklusban, 2014-2020 között is számos, nem vízgazdálkodásnak nevesített, de tartalmilag azt érintő fejlesztés várható, különösen az Országos Környezeti Kármentesítési Program (KEHOP 3. prioritástengely 22 milliárd Ft), valamint a természetvédelmi és élővilágvédelmi fejlesztések (KEHOP 4. prioritástengely 30 milliárd Ft) keretében.
8.6.5 A TOP támogatási rendszere

A VGT Intézkedési Programjából a TOP-hoz az olyan intézkedések kapcsolhatók, amelyik a KEHOP-ban nem szerepelnek, de a vizek állapota szempontjából kiemelkedően fontosak, s mind a VGT, mind az NKP4 intézkedései között megtalálhatók.

8-11. táblázat: A megyei önkormányzatok és a megyei jogú városok tervezési jogkörében készülő fejlesztési programok forrásainak indikatív összege a Balaton részvízgyűjtőn (310,1 Ft/Euró árfolyamon számítva)

<table>
<thead>
<tr>
<th>Megye</th>
<th>Megye részvízgyűjtő területéhez tartozó területére jutó megyei szintű fejlesztési programok forrása, milliárd Ft</th>
<th>Részvízgyűjtőhöz tartozó megyei jogú városok jogkörében készülő fejlesztési programok forrása, milliárd Ft</th>
<th>Részvízgyűjtőhöz tartozó forrás összesen, milliárd Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somogy</td>
<td>14,19</td>
<td>14,19</td>
<td></td>
</tr>
<tr>
<td>Vas</td>
<td>2,75</td>
<td>2,75</td>
<td></td>
</tr>
<tr>
<td>Veszprém</td>
<td>13,22</td>
<td>13,22</td>
<td></td>
</tr>
<tr>
<td>Zala</td>
<td>11,59</td>
<td>11,20</td>
<td>22,79</td>
</tr>
<tr>
<td>Összesen</td>
<td>41,75</td>
<td></td>
<td>52,95</td>
</tr>
</tbody>
</table>

Számításaink szerint a TOP megyei önkormányzatok tervezési jogkörében készülő megyei szintű fejlesztési programok forrásai indikatív összegénél 5,2 %-a jut a Balaton részvízgyűjtőre. Csak egy megyei jogú város található a Balaton részvízgyűjtőn, Zalaegerszeg. Az általa felhasználható TOP forrás indikatív összege 2,9 %-a az összes megyei jogú város által felhasználható TOP forrásnak.

A megyei szintű fejlesztési források prioritásonként és intézkedésekénti várható összegét az alábbi táblázat mutatja be a Balaton részvízgyűjtőre.

8-12. táblázat: Balaton részvízgyűjtőre jutó megyei szintű fejlesztési TOP források intézkedéseként, Mrd Ft

<table>
<thead>
<tr>
<th>Prioritásiék(Intézkedések)</th>
<th>Somogy megye</th>
<th>Vas megye</th>
<th>Veszprém megye</th>
<th>Zala megye</th>
<th>Balaton részvízgyűjtő összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Térési gazdasági környezet fejlesztése a foglalkoztatás elősegítésére</td>
<td>5,24</td>
<td>1,02</td>
<td>4,93</td>
<td>4,12</td>
<td>15,31</td>
</tr>
<tr>
<td>1.1. Helyi gazdasági infrastruktúra fejlesztése</td>
<td>2,04</td>
<td>0,36</td>
<td>1,87</td>
<td>1,44</td>
<td>5,71</td>
</tr>
<tr>
<td>1.2. Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés</td>
<td>1,22</td>
<td>0,25</td>
<td>1,20</td>
<td>1,04</td>
<td>3,71</td>
</tr>
</tbody>
</table>
Prioritások/Intézkedések

<table>
<thead>
<tr>
<th>Prioritások/Intézkedés</th>
<th>Somogy megye</th>
<th>Veszpré megye</th>
<th>Zala megye</th>
<th>Balaton részvízgyűjtő összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. A gazdaságfejlesztést és a munkaerő mobilitás ösztönzését szolgáló közkeledeőfejlesztés</td>
<td>0.91</td>
<td>0.18</td>
<td>0.85</td>
<td>0.74</td>
</tr>
<tr>
<td>14. A foglalkoztatás segítése és az életminőség javítása családbarát, munkába állást segítő intézmények, közzelojáldatások fejlesztésével</td>
<td>1.08</td>
<td>0.24</td>
<td>1.01</td>
<td>0.89</td>
</tr>
<tr>
<td>2. Vállalkozásbarát, népességmegtartó településfejlesztés</td>
<td>2.62</td>
<td>0.51</td>
<td>2.45</td>
<td>2.38</td>
</tr>
<tr>
<td>2.1. Gazdaságélenkítő és népességmegtartó településfejlesztés</td>
<td>2.62</td>
<td>0.51</td>
<td>2.45</td>
<td>2.38</td>
</tr>
<tr>
<td>3. Alacsony szén-dioxid kibocsátású gazdaságra való áttérés kiemelten a városi területeken</td>
<td>3.56</td>
<td>0.69</td>
<td>3.33</td>
<td>2.92</td>
</tr>
<tr>
<td>3.1. Egészségügyi alapellátás infrastrukturális fejlesztése</td>
<td>0.38</td>
<td>0.08</td>
<td>0.37</td>
<td>0.31</td>
</tr>
<tr>
<td>4. A helyi közösségi szolgáltatások fejlesztése és a társadalmi együttműködés erősítése</td>
<td>1.10</td>
<td>0.22</td>
<td>1.04</td>
<td>0.90</td>
</tr>
<tr>
<td>4.1. A szociális alapszolgáltatások infrastrukturális bővítése, fejlesztése</td>
<td>0.30</td>
<td>0.06</td>
<td>0.29</td>
<td>0.25</td>
</tr>
<tr>
<td>4.3. Leromlott városi területek rehabilitációja</td>
<td>0.41</td>
<td>0.08</td>
<td>0.38</td>
<td>0.34</td>
</tr>
<tr>
<td>5. Megyei és helyi emberti erőforrás fejlesztések, foglalkoztatis-ösztönzés és társadalmi együttműködés</td>
<td>1.64</td>
<td>0.31</td>
<td>1.49</td>
<td>1.28</td>
</tr>
<tr>
<td>5.1. Foglalkoztatis-növelést célzó megyei és helyi foglalkoztatis-ügyüttműködések (paktumok)</td>
<td>1.22</td>
<td>0.23</td>
<td>1.10</td>
<td>0.94</td>
</tr>
<tr>
<td>5.2. A társadalmi együttműködés erősítését szolgáló helyi szintú komplex programok</td>
<td>0.15</td>
<td>0.03</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>5.3. Helyi közösségi programok megvalósítása</td>
<td>0.26</td>
<td>0.05</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Összesen</td>
<td>14.16</td>
<td>2.75</td>
<td>13.23</td>
<td>11.59</td>
</tr>
</tbody>
</table>

Forrás: Megyei ITP-kből saját összeállítás

A belterületi csapadékvíz-gazdálkodást

A TOP a „Vállalkozásbarát, népességmegtartó településfejlesztés” intézkedés közé sorolja. Ennek a forrasösszege nem ismert és a hatóköre is korlátozott. A TOP így fogalmaz: „a nagy léptékű, komplex csapadékvíz-elvezetési rendszerek / hálózatok kiépítése nem lehetséges. A fejlesztéseket vagy akcióterületi fejlesztésekhez igazodva szükséges megtérve, vagy azokra a településrézserekre célzó fókuszálni, ahol a csapadékvíz elvezetés hiánya jelentős természeti kockázatot hordoz magában.” A prioritástengelyhez tartozó indikátor pedig az „Bel- és csapadékvízvédelmi létesítmények hossza”, s célértéke 2023-ra 558 km. A TOP-ban nincs utalás arra, hogy ezek a belterületi intézkedések valóban VKI konform megoldásokat fognak-e tartalmazni, azaz vízvisszatartás, vízminőség-védelem meghatározó lesz-e.

A fentieken túlmenően vannak olyan beavatkozások, amelyek a települési környezet minőségének javításával együtt vízvédelmi célokat is szolgálnak. Ezen intézkedések illeszkednek a 2. prioritás 1. beruházási prioritásába, amelyek a 2. specifikus célkitűzéshez tartoznak (a települési életminőség javítása környezeti infrastruktúra fejlesztésekre révén).

Az EU által elfogadott TOP beavatkozási kategóriánként is megadja az uniós támogatások indikatív bontását. Vízgazdálkodás és az ivóvízkészletek védelme (021) (ideértve a vízgyűjtő-gazdálkodást, a vízellátást, az éghajlatváltozások és a szivárgás visszaszorítását) céljára a TOP 12,6 milliárd Ft uniós támogatást irányoz elő, ez kiegészítve a hazai 15 %-os társfinanszírozással.
14,8 milliárd Ft forrást jelent, amíg a ROP-okból a 2007-2013-as fejlesztési időszakra vonatkozóan belvíz- és csapadékvízelvezetésre összesen 73 mrdf Ft, helyi és társégi jelentőségű vízrendszerek rekonstrukciójára 44 mrdf Ft támogatást ítéltek oda. Ehhez képest az ennél szélesebb körre tervezett TOP keret ennek kb. tizede lesz.

A TOP-ból a vízgazdálkodásra és az ivóvízkészletek védelmére (021) szánt országos keretből becsülünk szerint 0,7 milliárd Ft juthat a Balaton részvízgyűjtő területére, ez kiegészítve a hazai 15 %-os társfinanszírozással 0,8 milliárd Ft forrást jelent, szemben a ROP-ok Balaton részvízgyűjtőre juttatott hasonló célú 2,27 Mrdrd Ft támogatásával.

A TOP-ból biodiverzitás védelme és javítása, természetvédelem és zöld infrastruktúra (085) szánt országos keretből becsülünk szerint 1,3 milliárd Ft juthat a Balaton részvízgyűjtő területére, ez kiegészítve a hazai 15 %-os társfinanszírozással 1,6 milliárd Ft forrást jelent, míg a ROP-okból a Balaton részvízgyűjtőre nem juttattak ilyen célú támogatást.

8.6.6 Javaslatok a VGT intézkedések finanszírozására

Az EU támogatások segítségével számos VGT intézkedés finanszírozható, de vannak olyanok, amire nem jutott forrás. Ilyenek a vízbázisvédelem, 2000 LE alatti települések szennyvízkezelése, de kifejezetten csak hidromorfológiai célú intézkedésekre (kivéve, ha azok kapcsolódnak más vízgazdálkodási célú intézkedésekehez, KEHOP 1. prioritás) sem jutott forrás. Vannak olyan területek, ahol kifejezetten kevés forrás jutott. Ilyen körülmények között három irányban kell mozdulni: a hazai forrásokat javasolt bővíteni, a gazdaságszabályozási eszközöket alkalmazni (lásd 8.4 fejezet, 8-4. melléklet gazdaságszabályozási koncepció) és a támogatások hatékonyságát növelni.

Az integrált területi megközelítés, komplex projektek és a más OP-kkal való kapcsolat rendkívüli fontosságú a VKI céljainak eléréséhez, ezért javasolt a KEHOP-on belül a a természetvédelem és a vízgazdálkodási projektek összehangolása. Az egyes OP-k között is ki kell használni a szinergiákat a következő területeken:

- vízgazdálkodás-öntözés-halgazdálkodás (KEHOP-VP-MAHOP),
- az árvízvédelem-tájgazdálkodás, vízgazdálkodás-vízvisszatartás (KEHOP-VP),
- klimaalkalmazkodás-vidékfejlesztés (KEHOP-VP),
- a szennyvízkezelés, szennyvíziszap kezelés és vízvisszatartás és vidékfejlesztés területén

Ahol ilyen típusú fejlesztések együttes megvalósulására volna mód integrált megközelítésű projekteket javasolt megvalósítani.
9 Kapcsolódó programok és tervek

Az országos programokat és terveket és elérhetőségüket részletesen a 9-1. melléklet tartalmazza. A részvízgyűjtőkre vonatkozóan csak a részvízgyűjtőkhöz tartozó megyék programjait vizsgálok meg. A Balaton részvízgyűjtőn elhelyezkedő megyéket és a megyék területének a Balaton részvízgyűjtőhöz tartozó arányát az alábbi táblázat mutatja be.

9-1. táblázat: A megyék területének a Balaton részvízgyűjtőhöz tartozó aránya

<table>
<thead>
<tr>
<th>Megye</th>
<th>Megye területének a Balaton részvízgyűjtőhöz tartozó aránya, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somogy</td>
<td>32,6</td>
</tr>
<tr>
<td>Vas</td>
<td>13,0</td>
</tr>
<tr>
<td>Veszprém</td>
<td>29,3</td>
</tr>
<tr>
<td>Zala</td>
<td>50,3</td>
</tr>
</tbody>
</table>

A magyar közigazgatás elmúlt években lezajlott reformja (a helyi önkormányzatok, a járások, a megyék és a központi állam közötti feladat- és forrásosztás újraszabályozásával) során létrejöttek azok a keretek, amelyek a helyi és térségi fejlesztési és forrásosztási állomány újraszabályozásával. Ebből a szempontból a legfontosabb változás, hogy a megyék erős tervezési és területfejlesztési feladatköröket kaptak. Ezért először ismertetjük a megyék stratégiai programjait, majd a TOP keretében finanszírozni tervezett Integrált Területi Programjaikat.

A kapcsolódó megyei programokat és terveket, elérhetőségüket és a VKI 4.7. cikkely szerinti vizsgálat esetleges szükségességét a 9-2. mellékletben mutatjuk be, itt röviden csak a VKI-val kapcsolatos vonatkozásaikat foglaljuk össze.

9.1 Megyei stratégiai dokumentumok és programok

A Területfejlesztési Törvény a Balaton Fejlesztési Tanács feladatait a Balaton Kiemelt Üdülőkörtre – Balaton Kiemelt Térségére – vonatkozó területfejlesztési dokumentumok elkészítését, elsőként az ennek keretében elkészített programot ismertetjük. A programoknak a felszíni és a felszín alatti vizekre várható hatását a dokumentumokra elkészített SKV-k alapján foglaljuk össze. Mindegyik területfejlesztési programnak alapelve a fenntarthatósági szempontok érvényesítése, a környezeti értékek megóvása, mégis vannak olyan prioritások, amelyek a felszíni és a felszín alatti vizek nagyobb igénybevételét, terhelését eredményezhetik.
9.1.1 Balaton Kiemelt Térség Fejlesztési Programja

A Balaton Kiemelt Térség fejlesztési programja elsősorban egy gazdaságfejlesztési, versenyképességet növelő program, mely elsősorban a turizmsgazdaságon keresztül kívánja és tudja elérni a megfogalmazott célokat:

- 700 ezer vendégéjszakaszám növekedés,
- 10 ezer fő részére új munkahely teremtése.

Az, hogy a térségben a tervezett fejlesztések következtében megemelkedik az itt tartózkodók száma (a turizmus és az egészségpipar fejlesztése nyomán), már magában is a helyi természeti erőforrások nagyobb mértékű felhasználásával jár, különösen a vizek minősége romolhat. A vendégéjszakák számának növelésével, szükségszerűen arányosan növekszik a direkt és közvetett szolgáltatást nyújtó vállalkozásokban foglalkoztatottak száma is, továbbá a GDP. A célkitűzés által potenciálisan növekvő gazdasági aktivitás okozta terhelés – még a környezeteterhelést csökkenti tevékenységek preferálásával együtt is – összességében kedvezőtlenül érintheti a térség környezeti rendszereit.

A vendégéjszaka szám növelése részben a vendégszámlap összekeverésével, részben a tartózkodási idő megnövekedésével, az attrakciók minőségének és számosságának növelése, a marketing tevékenység erősítése, a szezon meghosszabbítására, tavaszi és őszi szezonra alkalmas infrastruktúra kiépítése, a régió konnyebb megközelíthetősége, az attrakciók regionális gyorsabban elérhetősége mind ezt biztosító feltételel. A szezon hosszabbítása időben elnyúló terhelést, a háttérfelületek fejlesztése pedig a parttól távolabb eső területek növekvő környezeti igénybevételét eredményezi. Új elemként került a koncepcióba az egészségipar, egészségturizmus hangsúlyosabb megjelenítése.

A Balaton térségében kiemelten fontos a vízminőség javítása, ezt a turizmus, illetve a mezőgazdaság fejlesztése veszélyeztetheti. A vitorlásturizmus bővítése esetében, például a környező szennyezés kezelése jelenthet problémát, az egészségturizmus fejlesztése során pedig számtalan kellemetlenségi, gyógyparkok előállítása. A Balaton térségében kiemelten fontos a vízminőség javítása, ezt a turizmus, illetve a mezőgazdaság fejlesztése veszélyeztetheti. A vitorlásturizmus bővítése esetében, például a keletkező szennyezés kezelése jelenthet problémát, az egészségturizmus fejlesztése során pedig számtalan kellemetlenségi, gyógyparkok előállítása. A Balaton térségében kiemelten fontos a vízminőség javítása, ezt a turizmus, illetve a mezőgazdaság fejlesztése veszélyeztetheti. A vitorlásturizmus bővítése esetében, például a keletkező szennyezés kezelése jelenthet problémát, az egészségturizmus fejlesztése során pedig számtalan kellemetlenségi, gyógyparkok előállítása.
A növekvő vendégforgalom kiszolgálására, a bel és külföldi turisták térségbe utazásához, a megnövekedett környezet terhelés káros hatásainak kivédésére, a fejlesztések meglévő környezetbe illesztéséhez elengedhetetlen infrastruktúrafejlesztéseket kell végrehajtani.

A Stratégia 6. prioritása külön foglalkozik a környezet fejlesztésével, amelyben az alábbi intézkedéseket tervezik véghezvinni:

- **6.1 Vízpart rehabilitáció:** Ennek keretében a Balaton menti parti sáv NATURA 2000 területein az élőhelyek védelmét, a településeken a zöldfelületek megőrzését tervezik. A stratégia célja a tóhoz való hozzáférést biztosító terek növelése és az illegális betöltsékek valamint bejárók megszüntetése is. A dokumentum külön kiemeli a vízminőség javításának fontosságát is.

- **6.2 Balaton és térsége vízgazdálkodáshoz kapcsolódó fejlesztések:** Az intézkedés célja többek között a tó és a hozzá kapcsolódó vízfolyások minőségének védelmét, a biztonságos vízkérőlés feltételeinek megteremtését, a vízvisszatartás, víztározás és kiegyenlítés megoldását, valamint ehhez kötődően az ivóvíz minőségének megőrzését és vízvezetési rendszerek kiépítését tervezik. Célszerű lenne továbbá a nem ivóvíz minőségű vízigények gazdaságos és azonnali megoldását tervezni. Ezen kívül külön kiterjedt intézkedések a Balaton-felvidéki Nemzeti Park területén elvégzendő beavatkozásokat, közöttük természeti környezet megőrzésére és az élőhelyek védelmét célzó programok folyamatos megvalósítására. A vízkérőlés felügyelete, a vízvezetési rendszerek és az alsó vízvezetési rendszer kiépítését tervezik.

- **6.3 Balaton vízkérőlés támogatására egységes megfigyelő-, és tájékoztatási és döntéshozó rendszer kialakítása:** Az intézkedés célja a tó vízállásának a nyári időszakban javítása, amelynek eredményeként az élőhelyek védelmét célzó programok folyamatos megvalósítására. A vízkérőlés felügyelete, a vízvezetési rendszerek és az alsó vízvezetési rendszer kiépítését tervezik.

- **6.4 Települési környezet minőségének javítása:** A vállalók és építőiparosok számára fontos lehetőség, hogy a fejlődő városokban és településekben a természeti értékek javítása részletesen megvannak. Az intézkedés célja a tó vízállásának a nyári időszakban javítása, amelynek eredményeként az élőhelyek védelmét célzó programok folyamatos megvalósítására. A vízkérőlés felügyelete, a vízvezetési rendszerek és az alsó vízvezetési rendszer kiépítését tervezik.

- **6.5 Biodiverzitás és természeti rendszerek fenntartása:** A környezeti szempontból talán legfontosabb és legkönnyebb intézkedés az őkoszisztéma fenntartásának elvégzése. Az intézkedés célja a tó vízállásának a nyári időszakban javítása, amelynek eredményeként az élőhelyek védelmét célzó programok folyamatos megvalósítására. A vízkérőlés felügyelete, a vízvezetési rendszerek és az alsó vízvezetési rendszer kiépítését tervezik.
klimaváltozás hatásaihoz való alkalmazkodás elősegítését, a negatív hatások mérséklését tervezik. A biodiverzitás fenntartását veszélyeztetheti a turizmus, a mezőgazdaság, illetve a közlekedés fejlesztése. A strandok fejlesztése, a fürdőzök számának növekedése ellentétesen hatathat a Balaton élővilágának védelmével, a megnövekedett vízi forgalom pedig az invázív fajok behurcolásának veszélyét is növeli. Ugyanakkor a strandok átgondolt, minőségi fejlesztése pozitív hatást gyakorol a környezetre, például növekedhet a csatornázott szennyvíz aránya, a fővenesítés javíthatja a tó öntisztulását.

6.6 Energiahatékonyság javítása és kapcsolódóan megújuló energia használat terjesztése: Az intézkedés keretében a megújuló energiaforrások fűtési és hűtési cél felhasználásának terjesztését, napelemek, napkollektorok kihelyezését, kisebb biomassza fűtőművek létesítését, többszűlű, lokális földhő-hasznosító rendszerek kiépítését, valamint a hulladékok energetikai hasznosításának megvalósítását tervezik.

6.7 Elektromos közlekedés balatoni pilot projektje: A projekt keretében elektromos jármű töltőhálózat létesítését (e-bike-okra és 0 emissziós hajókra is), intelligens áramellátó hálózat fejlesztését és napelemes csúcsidőszaki ellátórendszer létesítését támogatják.

A megyei tervezési dokumentumok közül Veszprém és Somogy megye balatoni tervezését a BKT fejlesztési dokumentumaival összhangban készítette el, a két megye fejlesztési dokumentumai kitérnek a BKÜ tervezésével való koherencia vizsgálatára. Zala megye területfejlesztési koncepciója ugyan nem áll ellentében a BKT fejlesztési dokumentumaival, de a koncepció a Balaton Régióval meglehetősen laza együttműködésre enged következtetni. Mindhárom megye más fejlesztési hangsúlyokat fogalmaz meg (lásd az alábbi táblázatot). Vas megye területének egy kis része ugyan a Balaton részvízgyűjtőhöz tartozik, de a megye nem része a Balatoni Kiemelt Térségnek.

9-2. táblázat: A Balatoni Régióra vonatkozó megyei fejlesztési elképzelések kapcsolata a BFT stratégiai céljaival

<table>
<thead>
<tr>
<th>BFT stratégiai céljaí</th>
<th>Somogy megye fejlesztési elképzelései a Balaton térségben</th>
<th>Veszprém megye fejlesztési elképzelései a Balaton térségben</th>
<th>Zala megye fejlesztési elképzelései a Balaton térségben</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Gazdaság-fejlesztés, kutatás-fejlesztés, innováció</td>
<td>Versenyképesség, innováció</td>
<td>Kreatív tudás, innováció</td>
<td></td>
</tr>
<tr>
<td>2.Turizmus</td>
<td>Turizmus időbeli és térbeli kiterjesztése</td>
<td>Turizmus időbeli és térbeli kiterjesztése, turisztikai szolgáltatások diverzifikálása</td>
<td></td>
</tr>
<tr>
<td>3.Egészségipar</td>
<td>Egészségipar (Balatonfüred, Tapolca)</td>
<td>Egészségipar (Hévíz)</td>
<td></td>
</tr>
<tr>
<td>4.Mezőgazdaság, helyi termék</td>
<td>Mezőgazdaság, helyi termék</td>
<td>Borászat</td>
<td></td>
</tr>
<tr>
<td>5.Környezet-fejlesztés és Ezerévegél: agglomeráció problémái nem jelennek meg hangsúlyosan a fejlesztési dokumentumokban</td>
<td>Környezeti infrastruktúra fejlesztése</td>
<td>Környezet minőségének javítása (karsztvizek védelme, vízszintszabályozás)</td>
<td></td>
</tr>
<tr>
<td>6.Átvizsgálóprogramok és tervek</td>
<td>Megjövő energia hasznosítása</td>
<td>Agglomeráció problémái (túlzott beépítés)</td>
<td></td>
</tr>
</tbody>
</table>

| Balatoni részvízgyűjtő | Balatoni részvízgyűjtő | Balatoni részvízgyűjtő | Balatoni részvízgyűjtő |
9.1.2 Somogy Megye Területfejlesztési Programja

Somogy megye területe három részvízgyűjtőhöz is tartozik (Duna, Dráva, Balaton), körülbelül egyforma területtel. A program prioritásiak mindhárom területen érvényesek, de a konkret intézkedésekben lehetnek különbségek.

Az intézkedések között a vízgazdálkodás területét leginkább érintő beavatkozások a következők:

Az 5. prioritás: A fenntartható gazdálkodást és erőforrás felhasználást, valamint a megye lakosságának életminőség javítását támogató környezetgazdálkodási beruházások támogatása keretében:

- 5.3. intézkedés: a mezőgazdasági termelésre gazdaságosan nem hasznosítható területeken biomassza termelő ültetvények létesítése. Szigetszerűen a megye teljes területén, de kiemelten a jellemzően gyenge termőképességű szántó területekkel rendelkező Belső-Somogyban tervezkik.

- 5.5. A hulladék feldolgozó és hasznosító ipar innovatív beruházásainak, ill. az ipará levelepedését szolgáló fejlesztések támogatása. Az elkölöntetten gyűjtött hulladékok anyagában történő hasznosítás célzó fejlesztések megvalósítása a gazdaságossági és logisztikai adottságokat és szempontokat figyelembe véve elsősorban a térségi hulladékgazdálkodási programok keretében kijelölt gyűjtő- és feldolgozó (pl. előválogató) állomásoknak helyt adó településeken és vonzásközpontokban terveztek.
Somogy megye területfejlesztési programjában megfogalmazott prioritások és a betervezett beavatkozások összhangban vannak a területi vízgyűjtő-gazdálkodási tervekkel. Ezek közül is kiemelt feladatként kezelik az alábbiakat:

- a felszíni és felszín alatti vízbázisok védelme,
- a felszíni és felszín alatti vízkészletek, illetve a vízi és vízparti ökoszisztéma védelme, a parti sávok természetes, természetközeli állapotának lehetőség szerinti biztosítása, helyreállítása, integrált vízgazdálkodási beruházások az ivó- és öntözővíz szükséglet tartós kielégítésére,
- komplex élőhely –és vízvédelmi program, a megye élővizei vízminőségének változatlan biztosítása,
- a megye természeti adottságainak megfelelő felkészülés a klímaváltozás káros hatásainak kivédésére, mezőgazdasági vízgazdálkodási létesítmények preventív fejlesztése, öntözési rendszerek fejlesztése.

A felszín alatti vizek szennyezésének csökkentése érdekében kiemelt szempontként kezelik a csatornázatlan területeken a szennyvízkezelés megoldása. Fontos céljuk, hogy minden érintett település rendelkezzen települési szennyvízkezelési programmal.

A program mind a hét prioritása során betervezett beavatkozások következetesen az innovációra épülnek. Az V. prioritás önmagában is a környezetvédelmet, a környezetgazdálkodás fejlesztését szolgálja. A betervezett települési és térségi infrastruktúra fejlesztések a talajok és vizek védelmét is szolgálják.

Összefoglalóan megállapítható, hogy a Somogy Megye 2014-2020 időszakra vonatkozó területfejlesztési programja tartalmazza a földtani közeg felszíni és felszín alatti vizek védelmét is szolgálják.

Összefoglalóan megállapítható, hogy a Somogy Megye 2014-2020 időszakra vonatkozó területfejlesztési programja tartalmazza a földtani közeg felszíni és felszín alatti vizek védelmét is szolgálják.

A fejlesztések megvalósulása a Somogy Megyei Környezetvédelmi Programra épülve elősegíti az országosan védett, az ex lege védett, a helyi védett és a Natura 2000 területek természeti értékeinek védelmét. A megfogalmazott alábbi programpontok valójában természettévédelmi érdeket szolgálnak:

- Természeti kockázatok megelőzésének, az ellenálló képesség fokozásának elősegítése.
- Komplex élőhely- és vízvédelmi program, a megye élővizei vízminőségének változatlan biztosítása.
- Természeti értékeinek védelme
- Fenntartható erdőgazdálkodás
- Fenntartható tájhasználatot eredményező és GMO-mentes mezőgazdasági termelés támogatása.
- Termőtalaj, termőföld védelme, nitrát irányelv gyakorlati érvényesítése.
- A megye természeti adottságainak megfelelő felkészülés a klímaváltozás káros hatásainak kivédésére, a Zala víztározó-program folytatása, mezőgazdasági vízgazdálkodási létesítmények preventív fejlesztése öntözési rendszerek fejlesztése.
Öko-szemléletet erősítő kisprogramok.

A természetközeli erdőgazdálkodás bevezetését szolgáló beruházások elsősorban a hegységi és dombvidéki erdők és az ártéri erdők valamint a Balaton térség (a Balaton Kiemelt Üdülőkörzetének területe) természetvédelmi fejlesztéseihez járulnak hozzá, míg a természetközeli mezőgazdálkodás bevezetését szolgáló fejlesztések főként a Natura 2000 és ÉTT területekre koncentrálódnak.

A mezőgazdasági művelés kiváltása energetikai ültetvényekkel komplex vízgyűjtővédelmi programokhoz kapcsolódóan vagy azok előkészítéseként szintén összekapcsolva jelenik meg a természeti és táji értékek védelmével.

9.1.3 Vas Megye Gazdaságfejlesztési Fókuszú Területfejlesztési Programja

A programban hét prioritás került kijelölésre. A megye javítására során határozott törekvés volt arra, hogy a hátrányos helyzetű településekre minél több fejlesztési elem koncentrálódjon. A következő prioritások szolgálják az átfogó célok elérését a gazdaság-fejlesztéshez kapcsolódóan:

4) Vállalkozás-fejlesztési program a hozzáadott érték növeléséért
5) Élelmiszer-termelés a helyi élelmiszer-ellátás és agrárvállalkozás ösztönzésére
6) Turizmus a magasabb költési értékért és hosszabb tartózkodási időért
7) Energia-hatékonyság a fenntartható működésért és energia-tudatosságért
8) Emberi erőforrás program a tehetségek megtartásáért, vonzásáért
9) Egészséges környezet a magas életminőség segítségéért
10) Közlekedés fejlesztése a külső és belső elérhetőségért

A Program megnevezi Vas megye fejlesztésének horizontális céljait, melyek minden releváns tevékenységet át kell, hogy hassanak:

- Fenntartható környezet- és tájhasználat
- Barnamészös területek hasznosítása
- Hátrányos helyzetű csoportok bevonása (esélyegyenlőség) a fejlesztésekbe
- Korszerű információs és kommunikációs technológiák (ICT) alkalmazása

A vállalkozásfejlesztési, versenyképesség-javítási és közlekedés-fejlesztési tevékenységek nagy része várhatóan nem a Balaton részvízgyűjtő területén fog megvalósulni.

Az Egészséges Környezeti Fejlesztések prioritás folyóvizek menti területek összehangolt fejlesztése intézkedése első helyen említi a felszíni vizek öntözése gazdálkodásban való hasznosításának elősegítését. Ez a pont abban az esetben komoly környezeti kárral járna megvalósulása esetén, ha az öntözési lehetőség nem korlátozódik kizárólag az ár- és belvizek során megtartásra kerülő vízkészletek öntözéssel való hasznosítására. A megye felszíni vizeinek nagy többsége időszakos vízfolyás, de még az állandó vízfolyások is szályos időszakban olyan kis vízhozamúak, hogy annak további vízkivétellel való csökkentése már kritikus állapotot eredményez mind a víztest ökoszisztémája, mind a vízfolyás menti területek talajvízkészlete csökkenésén át a partmenti vegetációra.
Vás megye Balaton részvízgyűjtőhöz tartozó részén a turizmus kiemelkedő jelentőségű, ennek fejlesztése várható a 3. prioritáson belül.

A mezőgazdaság fejlesztése, amennyiben nem kifejezetten extenzív, esetleg biogazdálkodás valósul meg, talaj-, és indirekt vízszennyezéssel mindenképpen számolni kell.

9.1.4 Veszprém Megyei Területfejlesztési Programja

Veszprém megye és térségei fejlesztésében a jóváhagyott területfejlesztési dokumentumok szerint prioritást élvez a versenyképesség növelése, a térség gazdaságának az itt élők megélhetését segítő fejlesztése, valamint a megye lakossága életminősége javítása, „jól léte” biztosítása.

A Veszprém megyei program fontos céljai közé tartoznak a gazdasági hatékonyság növelése (inkubátorházak, inovatív és szolgáltató központok létrehozása és tanácsadási szolgáltatások fejlesztése, stb.), az erőforrások jobb kihasználása, és a közlekedésfejlesztés is.

A területfejlesztési program egyik alapvető célja, hogy hozzájáruljon a környezetállapot javulásához. A fenntarthatóság elve, a környezeti értékek megőrzése, a környezetbiztonság, a klímaváltozás negatív következményeinek csökkentése szinte minden prioritás esetében megfogalmazódott. Két fejlesztési prioritás ugyanakkor (1. prioritástengely „A térségi és a helyi gazdaság fejlesztése, foglalkoztatás bővítése a megye hagyományosos foglalkoztató központjai nagyjából egyéb, illetve vidéki térségeiben” és beavatkozásai, a 2. prioritástatengely „A mobilitás támogatása, az elérhetőség javítása, a helyi és térségi közlekedés infrastruktúra fejlesztése” és beavatkozásai) magukban hordozhatja a környezetkárosítás bekövetkezésének lehetőségét is.

Az új beruházások (Ipari parkok, Inkubátorházak, Innovatív és Szolgáltató Központok létrehozása) és létesítmények esetében szükségszerűen tovább fokozódik a környezet terhelése. A túlzott, egységes gazdasági növekedésre koncentrálság különösen az egyiptornak és az alumiínumpark, a jármű-, és a hozzá kapcsolódó elektronikai ipar jelenthet potenciális veszélyforrást. A Balatontfüzfő térségében a vegyipari fejlesztések esetében az innovatív megoldások előterbe kerülése csökkentheti a felszíni és felszín alatti vizek terhelését.

A fejlesztési prioritások másik potenciális környezetkárosítása a közlekedésfejlesztéshez kapcsolódhat (3. prioritástengely). A térség integrálásának és belső térszerkezet fejlesztésének alapfeltétele a műszaki infrastruktúra hálózat fejlesztése. A fejlesztési koncepció és a program távlatban számlal a 8-as út negyedszeres szélesítésével, az M8 autópálya kiépítésével és egy észak-déli (Tapolca-Devecser-Pápa-Győr) új főút kiépítésével, és a 77-es út új főút kiépítésével, a 83-as és a 84-es út új főút kiépítésével a felszín alatti főutak és vasúthálózat fejlesztéssel.

A turizmus fejlesztése terén a legfrekventáltabb rekreációs térségekben a fokozott és lökésszerű, területtel és időben is rendkívül koncentrált környezetterhelés jelenthet gondot – különösen a Balaton térségében. Fenntarthatósági és turisztikai szempontból különösen fontos a természetes és természettőzi célú élőhelyek megőrzése.

A mezőgazdasági művelés a talajra, a vízre és az élővilágra gyakorolt hatásai révén kapcsolódik a környezeti elemekhez. A program 2. prioritása kiemelten kezeli a mezőgazdasági kapacitások növelésének kérdését, és az önfoglalkoztatás, a helyi termelés feltételeinek javítását szolgáló intézkedések erősítése is utal a mezőgazdaság szerepének várható növekedésére, amely jelentős hatással lehet a felszíni és a felszín alatti vizekre.
9.1.5 Zala Megyei Területfejlesztési Programja

A Program „Zala megye a „Zöld Zala” programra építve, gyögyturizmusra, egészségturizmusra, ipari, logisztikai és mezőgazdasági fejlesztésekre támaszkodva, a természet egységes megőrzése és megőrizte társadalmi és tisztes megélhetést biztosító gazdasággal, erős területi kohéziót biztosító közlekedési rendszerrel és élhető települések együttműködő hálózatával harmonikusan fejlődik.” célállapotot tűzte ki. Három területi stratégiai célkitűzést fogalmaztak meg:

1) Észak-Zala gazdaság- és iparfejlesztése (Zalaegerszeg, Pacsa, Zalalövő, Zalaszentgrót és térsége) - Pacsa kívételével Balaton részvízgyűjtő

2) Dél-Zala (Nagykanizsa, Zalakaros, Lenti és Letenye térsége) diverzifikált újraiparosítása és gazdaságának revitalizálása - csak Zalakaros tartozik a Balaton részvízgyűjtőhöz

3) Zala balatoni térsége (Keszthely és Hévíz térsége), kreatív tudásra és természeti értékekre épülő fejlesztése

A területi célok meghatározott földrajzi egységre irányulnak, amelyek a megye Balatoni részvízgyűjtőhöz tartozó térszerkezetét meghatározó két nagyobb város - Zalaegerszeg MJV és Keszthely Város – várta területét célozza. A kedvező terhelhetőség nem jelenti azt, hogy egy-egy nagyobb léptékű beruházás ne okozhatna akár jelentős negatív irányú változásokat a környezeti állapot terén. A felszíni és felszín alatti vizek jó állapotának megőrzése (elérése) különösen a Zala vízgyűjtőjén kiemelkedően fontos, mivel a Balaton vízműveinek állapotára befolyásolható.

A megye környezeti állapotában kedvező képesség érvényes, amely az ipari tevékenység termelését tekintve fokozatosan erősíti a gazdaságot. A budatistás és felszíni változások mértékével összhangban a környezeti állapot meghatározásának meghatározását a környezeti állapotának megőrzésével együtt tekintjük.

A megye természeti adottságainak hatékony védelmét is az szolgálja, ha a nagyobb léptékű ipari munkahelyteremtő beruházások a megyei jogú városokban (Zalaegerszeg), valamint az ipari menedzseri és lehetőségek mértékével összhangban a nagyobb gazdaságfejlesztési potenciállal rendelkező kisebb járási központokban (Keszthely) valósulnak meg.

A várhatóan a felszíni és a felszín alatti vizekre jelentős hatással lévő prioritások és intézkedések a következők:

1. prioritás: Innovatív, jövőbeni húzóágazatok fejlődésének és hálózatosodásának elősegítése

I/1. Megyei iparfejlesztés – a Nyugat Pannon Járműipari és Mechatronikai Központ részeként

- Ipari parkok, iparterületek, inkubátorházak és logisztikai központok fejlesztése: 1.736 mFt (TOP 1.1)
- Zalaegerszeg gazdaságfejlesztési projektjei (Mechatronikai és Gépipari Park, LOGIN-Z, SSC, Agráripari Park): 1.300 mFt (TOP 1.1)
fejlesztési céloknak megfelelően várhatóan jelentősen megnövekszik majd, ami körünyezeti szempontból további terhet jelenthet. Ezen kívül kisebb, megyei, illetve térségi léptékű integrált gazdaságfejlesztést terveznek befeftetés ösztönzéssel és a KKV-k támogatásával. Ehhez kapcsolódnak a II/2 Alternatív gazdasági hálózatfejlesztés intézkedés keretében tervezett újraiparosítás és hozzáadott értéknövelés a bútor-, építő- és kerámia iparban, valamint a feldolgozóiparban (faipar, textilipar, élelmiszeripar), a tradicionális zalai faipar revitalizációja, ami a megye egész területén kisebb vízügy növekedéssel és a vizek fokozottatott terhelésével járhat.

2. prioritás: Helyi értékekre épülő versenyképes gazdaság megteremtése

II/1. Megyei turizmusfejlesztés

Zala turisztikai fejlesztési terveinek középpontjában Közép-Európa legversenyképesebb gyógyászati és rekreációs térségeinek kialakítása áll:

- Megyei komplex egészség-turisztikai termék fejlesztése a gyógyturizmus, a sport, a wellness, a rekreációs és családábrázoló szolgáltatások és akkreditáltak fejlesztése révén.
- Megyei komplex ökoturisztikai termék fejlesztése a falusi turizmus szolgáltatásai (szálláshely, horgászat, kerékpározás, természetjárás, helyi termékpiacon) és az akkreditáltak fejlesztése révén.
- Konferencia és üzleti turizmus fejlesztése multifunkcionális (konferencia, sport, kultúra, rendezvények igényeit egyaránt kielégíteni képes) központok kialakítása, a vadászati turizmus fejlesztése és szálláshelybővítés révén.

II/2. Alternatív hálózatú gazdaságfejlesztés

Helyi alapanyagokra épülő élelmiszer-feldolgozóipari kisüzemek fejlesztését, termálvízre alapozott kertészeti kultúrák létrehozását, élelmiszer-szolgáltatások terveznek. A helyben termelt élelmiszerek, erdei termékek rövid csatornás, közvetlen értékesítési láncának kialakítása a cél. „Háztáji” programot indítanak a saját célú és helyi piacon értékesítésére. Létrehozzák a bio-gazdaságok kialakításának, fejlesztésének és piacról juttatásának zalai támogatási rendszerét. A jelenleg ismert főbb projektek a következők:

- Megújuló energiafelhasználáson alapuló élelmiszer-termelési és élelmiszer-szolgáltatás Agráripark létrehozása, Zalaegerszeg: 3.000 mFt (GINOP)
- Az alapanyagokra épülő élelmiszer-termelési és élelmiszer-szolgáltatás Agráripark létrehozása, Zalaegerszeg: 3.000 mFt (GINOP)
- A zalai élővízerekre (Balaton), ill. mesterséges vizekre, akvakultúrára alapozott fenntartható halászat: 5.000 mFt (MAHOP)

A térségben a tervezett fejlesztések következtében megemelkedő vendégforgalom (a turizmus és az agroklímatikus fejlesztése nyomán) és ezek helyi élelmiszerrel történő kiszolgálása a helyi természeti erőforrások nagyobb mértékű felhasználásával jár, romolhat a felszíni és a felszín alatti vizek minősége.

5. prioritás: Integrált környezetvédelmi programok a következő generációk életesélyeinek megteremtése és a környezeti szempontból fenntartható fejlődés érdekében

V/1. Megyei zöldgazdaság-fejlesztések

A megújuló energiafelhasználás fenntarthatósági hatékonyságának növelését, fenntartható erdőgazdálkodást, az illegális hulladéklerakók felszámolását tervezik. Az ivó- és öntözővíz szükséglet tartós
kielégítésére integrált vízgazdálkodási beruházásokat, a felszíni és felszín alatti vízbázisok garantált védelmét tűzték ki célul.

V/2. Természeti értékeink védelme

Komplex élőhely- és vízvédelmi program bevezetésével a megye élővizei vízminőségének változatlan biztosítása a cél. Támogatják a fenntartható tájhasználatot eredményező és GMO-mentes mezőgazdasági termelést, a termőtalaj, termőföld védelmét, a nitrát irányelv gyakorlati érvényesítését.

V/3. A természeti kockázatok megelőzésének, az ellenálló-képesség fokozásának elősegítése csak a zalai víziközmű szolgáltatások fejlesztését tartalmazza.

Az integrált környezetvédelmi programok várhatóan a felszíni és a felszín alatti vizek javulását eredményezik.

7. prioritás: Összehangolt infrastrukturális fejlesztések a területi kohézió erősítése érdekében

VII/1. A sármelléki repülőtér (Sármellék-Zalavári Ipari Park vonatkozásában), a Hévíz-Balaton Airport fejlesztése a megye nemzetközi turisztikai és gazdasági potenciáljának erősítése érdekében, a Keszthely-Sármellék ipari-szolgáltató övezet fejlesztése.

A repülőtér fejlesztések nem csak a turisztikai célú forgalom, hanem az áru- és teherforgalom növekedését is szolgálják.

VII/2. Közúthálózat fejlesztés

A megye fenntartható társadalmi-gazdasági fejlődéséhez hosszú távon nélkülözhetetlen, lakóhely és munkahely közötti, ingázás potenciálisan jelentkező kedvezőtlen környezeti hatásainak kiküszöbölése érdekében tervezik a közlekedési infrastruktúra fejlesztését:

- A Zalaegerszeg - Zalaszentiván - Nagykanizsa vasútvonal korszerűsítése és villamosítása, áru- és személyszállítási kapacitásának növelése, integrált, térségi érdekű közösségi közlekedési rendszer kialakítása a Murakeresztőr - Nagykanizsa - Zalaegerszeg, Nagykanizsa - Keszthely vonalonak, jól működő vasúti kapcsolattal Szombathely, valamint a Balaton északi és déli partja felé;

- A vasúti gerincvonalakra ráhordó, illetve az említett ipar- és gazdaságfejlesztési központokba közvetlenül behordó zéróemissziós, energiatakarékos, integrált és intelligens autóbuszos közösségi közlekedési rendszer közlekedési eszközeinek biztosítása és úthálózatának megfelelő színvonalú kialakítása;

- Biztonságosan használható, professzionálisan üzemeltetett, az energiahatékony, környezetkímélő multimodális, térségi közösségi közlekedési rendszerben integrált hivatásforgalmi kerékpárút-hálózat, illetve bérelhető kerékpáros eszközpark kialakítása;

- A megye észak-dél irányú közúti közlekedési gerincének kiépítése a települések elkerülésével Nagykanizsa és Zalaegerszeg között, a felesleges környezetterhelő beruházások elkerülése érdekében a tervezett észak – dél irányú M9 autópálya nyomvonalán.
A 7. prioritás keretében tervezett közlekedési projektek (kiemelten az elkerülő utak) vonatkozásában termőterületek művelésből történő végleges kivonásával kell számolni. Az új hálózati elemeket létrehozó projektben tervezett felszíni vizekre, elsősorban a síkvidéki területeken, ahol jelentős töltésépítések szükségesek egy-egy új nyomvonal esetében. A töltésépítést igénylő közúti fejlesztések a területen előforduló belvizek gyakoriságát növelik, illetve korábban belvízmentes területeken is megjelenhet a víz. Különösen új csomópontok kialakítása jár negatív hatással, ezekben az esetekben már a talajvizek áramlását is megváltoztatják, ezért a negatív hatások a felszín alatti vizek estetében is egyértelműek.

9.2 Széchenyi 2020
A Széchenyi 2020 operatív programjait a 9-1 melléklet mutatja be, jelen fejezetben csak azon tervezett nagypjekteteket, fejlesztéseket emeljük ki, amelyek közvetlenül hatnak a részvízgyűjtőre. A 2014-2020-as tervezés tekintetében a megyék elsősorban a Terület- és Településfejlesztési Operatív programban (TOP) megvalósuló fejlesztésekhez készítettek programokat - a TOP tartalmi és forrás kerete között.

9.2.1 Környezeti és Energiahatékonysági Operatív Program (KEHOP)
A KEHOP-ban nevesített projektek közül a következők érintik közvetlenül a Balaton részvízgyűjtőt:

- A Balaton levezető rendszerének rekonstrukciója, korszerűsítése, amelynek eredményeként javul a Balaton VKI szerinti állapota (maximális támogatás 12 Mrd Ft).
- Marótvölgyi öblözet rendezése, amelynek keretében elvégzik a Marótvölgyi belvízelvezető rendszer rekonstrukciós munkálatait, eredményeként javul a Kis-Balaton VKI szerinti állapota (maximális támogatás 1,2 Mrd Ft).
- Élőhely-védelem és helyreállítás a Kis-Balaton-medence és a Nyugat-Külső-Somogy kistájakon. A Balaton-felvidéki Nemzeti Parkban található Kis-Balaton Natura 2000 területen, valamint a Látrányi-puszta, Balatoni berkek és Ordacsai bék Natura 2000 területeken a gyepes élőhelyek helyreállítása, illetve a vizes élőhelyek rehabilitációja, vízpótlásának biztosítása révén 768 hektáron javul számos közösségi jelentőség faj és élőhely-típus természetvédelmi helyzete (maximális támogatás 425 M Ft).
- A legeltetési infrastruktúra átfogó fejlesztése a Káli medence és a Kis-Balaton térségében a természetvédelmi célú területkezelés biztosítása érdekében. A projekt célja a Káli medence és a Kis-Balaton tájegység gyepterületeinek természetvédelmi kezeléséhez, megőrzéséhez és fenntartásának biztosításához szükséges infrastrukturális feltételek megteremtése a természeti értékek eltünését eredményező sukcesziós folyamatok (cserjésedés, erdősülés, feltöltődés) megállítása és a korábban helyreállított gyepterületek hosszú távú
megőrzése. A projekttel szembeni szakmai elvárások ennek érdekében: a magyar szürke
szarvasmarha, bivaly és hortobágyi magyar racka állományokkal történő legeltetéssel
műszaki háttérenek fejlesztése, speciális gépek és eszközök beszerzése (maximális
támogatás 369 MFT).

A Tihanyi-félsziget és térségének komplex előhely-fejlesztése. A projekt a Tihanyi-félsziget
különleges természeti adottságok és hagyományos gazdálkodás kölcsönhatása nyomán
kialakult értékeinek megőrzését, illetve a térség védett és közösségi jelentőségű természeti
értékeinek fenntartását és természetvédelmi helyzetük javítását eredményező célzott,
egymáshoz rendszer-szerűen illeszkedő beavatkozások megvalósítását szolgálja.
A leromlott természeti állapotú és vízminőségű tihanyi Belső-tó ökológiai állapotának
javítását, a gyepetületek kis létszámmá, könnyen áthelyezhető juhnyájakkal, illetve magyar
szürke szarvasmarha gulyákkal történő támogatásának megvalósítását (maximális támogatás 450 MFT).

Mindegyik részvízgyűjtőt érinti a belvízi szivattyútelepek (820 MFT), a belvízvédelmi művek (5,2
milliárd Ft) és a kiemelt jelentőségű, a folyók életét befolyásoló nagyműtárgyak rekonstrukciója (10
milliárd Ft), ezek eredményeként javul az érintett víztestek VKI szerinti állapota.

Számos szennyvízkezelési fejlesztés és néhány ivóvízminőség-javító projekt, valamint
természetvédelmi infrastruktúra és vízés elhely fejlesztés várható a Balaton részvízgyűjtőn.

9.2.2 Terület- és Településfejlesztési Operatív Program (TOP)

A TOP tervezett beavatkozásai az országos fejlesztési politikai tervezés során feltárt, és az
országos fejlesztési dokumentumokban (kiemelten OFTK, Nemzeti Vidékstratégia, PM) rögzítettek
mellett az ezekkel összhangban folyó területi tervezés (megyei területfejlesztési koncepciók
és programok) során feltárt fejlesztési szükségek alepozódnak. Az OFTK tartalmaz az egyes
megyékre és négyszögökre beazonosított fejlesztési szükségeket és fejlesztési irányokat,
biztosítva az országos és területi tervezés összhangját. A TOP elsősorban a városok fejlesztésére
fókuszál, amely mellett a városok fejlesztési prioritási tengelyei, kihangsúlyozott intézkedései
alapján a vizsgált dokumentumban és a tájegység szempontjából nem lehetséges megfogalmazásának kerülhet sor.

A TOP prioritástengelyei és intézkedései közül néhány valamilyen, negatív vagy pozitív hatással
van a felszíni és felszín alatti vizekre. A prioritásbeli integrálódás során feltárt feltételek közül
alakulnak, amelyek valamennyi prioritástengely közül és a tájegység szempontjából feltételek
alapján nem lehetséges megfogalmazásának kerülhet sor.

A TOP prioritástengelyei és intézkedései közül néhány valamilyen, negatív és pozitív hatással
van a felszíni és felszín alatti vizekre. A törvény史料i és egyáltalán nincs hatással a vizekre
vagy csak olyan általános információk állnak rendelkezésre a vizsgált dokumentumban, amelyek
alapján nem lehetséges megfogalmazásának kerülhet sor.

A VGT Intézkedési Programjából a TOP-hoz az olyan intézkedések kapcsolhatók, amelyik a
KEHOP-ban nem szerepelnek, de a vizek állapota szempontjából kiemeltként fontosak, s mind a
VGT, mind az NKP4 intézkedései között megtalálhatók.

A beterületi csapadékvíz-gazdálkodást a TOP a „Vállalkozásbarát, népességmegtartó
településfejlesztés” intézkedés közé sorolja. A prioritástengelyhez tartozó indikátor pedig az „Bel-
és csapadék-vízvédelmi létesítmények hossza”. A vízrendezési beavatkozások esetében fontos
kérdés, hogy ezeket átfogó, az adott vízgyűjtő egészére kiterjedt módon tervezik-e meg. Ellenkező
esetben a települési csapadékvíz-elvezetési projektek a külterületi rendszerek további leromlását,
eróziót, illetve a környező térségek vízháztartásának megváltozását, a vizes élőhelyek károsodását okozhatják.

A fentieken túlmenően vannak olyan beavatkozások, amelyek a települési környezet minőségének javításával együtt vízvédelmi célokat is szolgálnak (a települési életminőség javítása környezeti infrastruktúra fejlesztések révén). Az alábbi táblázatban összefoglaljuk a Balaton részvízgyűjtőhöz tartozó megyék által tervezett, VKI-hoz kapcsolódó intézkedéseinek indikátoraikt.

9-3. táblázat: A megyék indikátor vállalása a VKI szempontjából lényeges intézkedésenként a Balaton részvízgyűjtőn

<table>
<thead>
<tr>
<th>Kimeneti indikátor neve</th>
<th>Mérték-egység</th>
<th>Somogy megye</th>
<th>Vas megye</th>
<th>Veszprém megye</th>
<th>Zala megye</th>
<th>Balaton részvízgyűjtő összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Helyi gazdasági infrastruktúra fejlesztése</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A fejesztett vagy újonnan létesített iparterületek és ipari parkok területe</td>
<td>hektár</td>
<td>24,44</td>
<td>4,29</td>
<td>22,27</td>
<td>17,29</td>
<td>68,28</td>
</tr>
<tr>
<td>A rehabilitált talaj összkiterjedése</td>
<td>hektár</td>
<td>0,13</td>
<td>1,56</td>
<td>8,20</td>
<td>0,00</td>
<td>9,89</td>
</tr>
<tr>
<td>1.2. Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A természeti és a kulturális örökségnek, illetve látványosságnak minősülő támogatott helyszíneken tett látogatások várható számának növekedése</td>
<td>látogatás /év</td>
<td>19 046</td>
<td>3 842</td>
<td>18 772</td>
<td>0</td>
<td>41 659</td>
</tr>
<tr>
<td>1.3. A gazdaságfejlesztést és a munkaerő mobilitás ösztönzését szolgáló közlekedésfejlesztés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A felújított vagy korszerűsített utak teljes hossza</td>
<td>km</td>
<td>6,03</td>
<td>1,17</td>
<td>5,86</td>
<td>4,93</td>
<td>18,00</td>
</tr>
<tr>
<td>2.1. Gazdaságélnéktől és népességmegtartó településfejlesztés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Városi területeken létrehozott vagy helyreállított nyitott terek</td>
<td>m2</td>
<td>24 740</td>
<td>4 800</td>
<td>23 118</td>
<td>22 468</td>
<td>75 126</td>
</tr>
<tr>
<td>Bel- és csapadék-vízvédelmi létesítmények hossza</td>
<td>m</td>
<td>9 896</td>
<td>1 920</td>
<td>9 247</td>
<td>0</td>
<td>21 063</td>
</tr>
<tr>
<td>A rehabilitált talaj összkiterjedése</td>
<td>hektár</td>
<td>0,10</td>
<td>0,07</td>
<td>0,31</td>
<td>0,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Városi területeken épített vagy renovált köz- vagy kereskedelmi épületek</td>
<td>m2</td>
<td>1 304</td>
<td>578</td>
<td>2 784</td>
<td>0</td>
<td>4 666</td>
</tr>
<tr>
<td>Megújult vagy újonnan kialakított zöldfelület nagysága</td>
<td>m2</td>
<td>8 150</td>
<td>5 051</td>
<td>24 326</td>
<td>0</td>
<td>37 527</td>
</tr>
<tr>
<td>3.2. Önkormányzatok energiahatékonyságának és a megújuló energia-felhasználás arányának növelése</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A megújulóenergia-termelés további kapacitása</td>
<td>MW</td>
<td>4,89</td>
<td>1,17</td>
<td>5,47</td>
<td>0,00</td>
<td>11,53</td>
</tr>
<tr>
<td>A megújuló energiaforrásból előállított energiamennyiség</td>
<td>PJ/év</td>
<td>0,04</td>
<td>0,01</td>
<td>0,05</td>
<td>0,00</td>
<td>0,10</td>
</tr>
</tbody>
</table>
4.3. Leromlott városi területek rehabilitációja

<table>
<thead>
<tr>
<th>Kimeneti indikátor neve</th>
<th>Mérték-egység</th>
<th>Somogy megye</th>
<th>Vas megye</th>
<th>Veszprém megye</th>
<th>Zala megye</th>
<th>Balaton részvízgyűjtő összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Városi területeken épített vagy renovált köz- vagy kereskedelmi épületek</td>
<td>m2</td>
<td>160</td>
<td>31</td>
<td>149</td>
<td>0</td>
<td>340</td>
</tr>
<tr>
<td>Városi területeken létrehozott vagy helyreállított nyitott terek</td>
<td>m2</td>
<td>1 630</td>
<td>478</td>
<td>2 303</td>
<td>0</td>
<td>4 411</td>
</tr>
</tbody>
</table>
10 A közvélemény tájékoztatása

10.1 A tájékoztatás folyamata

A társadalmi egyeztetés az intézkedések tervezésének fontos eleme, amely visszahat a részletes tervezésre. Az egyeztetés után, az intézkedési programmal együtt válunk véglegessé a környezeti célkitűzések is. Lényeges, hogy az érdekeltek számára a közzétartott információkból egyértelműen rajzolódjon ki az intézkedések hatékonysága, költségei, közvetett hatásai, a bizonytalanságok, a program finanszírozhatósága és megfizethetősége. A társadalmi egyeztetés hatékonyan támogatja a döntési folyamatot és rávilágíthat bizonyos ellentmondásokra is, valamint a nehezen számszerűsíthető szempontok beépülését segítik (pl. területfejlesztési prioritások, társadalmi támogatottság).

A társadalmi bevonás hasonlóan az első VGT gyakorlatához ún. nyílt tervezési folyamatban zajlik, ennek keretében több fordulós véleményezés lesz.

A különböző szakágazatok célkitűzéseinek korai megismerése, illetve integrálása érdekében a tervezés során a vízügyi és más agazatok jelenleg érvényes stratégiai terve, térségi, regionális, vagy országos terve, programja is sorba vételre kerül, továbbá e programok/projektek vizsgálatra kerülnek a várható hatások és a VKI 4.7 cikke szerinti kivétel alkalmazása érdekében. Az integrált vízgazdálkodási szempontok érvényesülése érdekében az árvízockázatkezelési tervezés eredményeként szükségesnek tartott intézkedések is beépülhetnek a második VGT-be. A vizekre jelentős hatást gyakorol az éghajlatváltozás, ezért az ehhez kapcsolódó intézkedéseket (hatások mérséklése, alkalmazkodás) is tartalmaznia kell a tervnek.

Az országos szintű intézkedések tervezése több lépésben történik, alkalmazkodva a társadalom bevonásának fázisaihoz, valamint a rendelkezésre álló információkhohoz. A felülvizsgált VGT tervezetében szereplő intézkedések programja sorra veszi a következő ciklusokra tervezett intézkedéseket. A második VGT-ben az intézkedések tartalma is felülvizsgálható, valamint az első tervben nem megfelelően részletes intézkedések kibontása a legfontosabb feladat. A felülvizsgált VGT a társadalmi egyeztetés alap-dokumentuma. A VGT2 végleges terv lesz, amely a társadalmi véleményezés eredményeként már tartalmazza az észrevételleket alapján beillesztett módosításokat és kiegészítéseket is, az intézkedések és a finanszírozási ütemezésével együtt.

A VGT2-ben a hangsúly a fenntartható vízgazdálkodás és a környezetvédelem koncepcionális, stratégiai elképzeléseinek bemutatásán, a hatáskeretek feltárásán és megfelelő kezelésén, a megvalósítás jogi és pénzügyi hátterének biztosításán, a megvalósítás során betartandó technikai feltételek egyértelmű megfogalmazásán, a tervekről meghatározó gazdasági és társadalmi szempontok összefoglalásán van. Az egész országra kiterjedő VGT2 tervezése befolyásolja a 2014-2020 között tervezett fejlesztéseket, szakágazati programokat, valamint a víztesten kívüli megadott intézkedések alapján folytatódhat a megvalósítás és a részletes tervezés. A VGT2-re épülhet majd az új konkrét projektek végrehajtása, és a szükséges jogszabályi változások. A víztestek (vízfolyás, állóvíz, felszín alatti víz), valamint a vízügyőtők szintjén történő kivitelezés pedig a konkrét területhez kötődő érdekeltek (állam, önkormányzat, gazdálkodó szervezet vagy magánszemély) feladata. A VKI célkitűzései keretében adnak a vízügyi hatósági tevékenységeinek is.

A VGT2-ben megfogalmazott jogszabály módosítási javaslatok alapján szabályozáson keresztül a hatósági intézkedéseket a tervben kitűzött környezeti célok teljesítését kell segíteniük.
10.2 Társadalmi véleményezési határidők és feladatok
A társadalom számára a tervezés során három véleményezési szakasz áll rendelkezésre:

I. szakasz: A Vízgyűjtő-gazdálkodási Terv felülvizsgálatának ütemtervének és munkaprogramjának nyilvánosságra hozatala és társadalmi vitája

II. szakasz: Jelentős Vízgazdálkodási Kérdések nyilvánosságra hozatala és társadalmi vitája

III. szakasz: A felülvizsgált vízgyűjtő-gazdálkodási terv(ek) tervezetének nyilvánosságra hozatala és társadalmi vitája

I. szakasz: A Vízgyűjtő-gazdálkodási Terv felülvizsgálatának ütemtervének és munkaprogramjának nyilvánosságra hozatala és társadalmi vitája

II. szakasz: Jelentős Vízgazdálkodási Kérdések (JVK) nyilvánosságra hozatala és társadalmi vitája

A VKI szerint a vízgyűjtőn azonosított jelentős vízgazdálkodási problémák (JVP-k) dokumentumát közzé kell tenni és legalább hathonapos konzultációs periódust kell biztosítani megvitatására. A jelentős vízgazdálkodási problémák közé a VKI környezeti célkitűzésének oldására, az adott problémák határértékeihez és határiósságaihoz, illetve a probléma hatását és megoldást kell vizsgálni.

Figyelembe véve a vízvédelmi, természetvédelmi és környezetvédelmi szempontot, a feltárt jelentős vízgazdálkodási kérdések (későbbiekben a társadalmi vélemények alapján jelentős vízgazdálkodási problémák) határidőjének megválaszolására és megoldandó feladatok összefoglalására, a 4 részvízgyűjtőre és a 4 alegységre 2014. november 24-én vált elérhetővé az OFV (http://www.ovf.hu/hu/jelentos-vizgazdalkodasi-kerdeseink) és a vizügyi igazgatóságok honlapján.

A véleményeket 2015. május 31-ig lekérte és megküldte a Természettudományi és Gazdaságtudományi Intézet.
Az alegységi és a részvízgyűjtő JVP-re érkezett írásbeli vélemények és szakértői válaszok tételes feldolgozása a 10-1 mellékletben találhatók.

A feldolgozás során a központilag regisztrált kérdések közül, azokat, melyek azonosíthatóak voltak, a releváns részvízgyűjtőhöz kapcsolódtak, továbbá a több részvízgyűjtő területét is érintő igazgatóságoktól továbbított véleményeket az érintett részvízgyűjtőkhoz csoportosítottuk.

A kérdések, észrevételek jelentős része nemcsak a problémákat vetette fel, hanem intézkedési javaslatokat is tettek. Így a válaszok egy része értelemszerűen az volt, hogy az észrevételeket továbbítják a VGT tervezők felé. A VGT tervezők az észrevételeket újból átnézték és feldolgozták, a VGT, az Intézkedési Program kidolgozásánál figyelembe vették.

A részvízgyűjtő és alegységi JVP dokumentumokat is figyelembe vevő, országos szintű JVP dokumentum 2015. június 21-én került fel a www.vizeink.hu honlapra, melyet 2015. július 31-ig lehetett véleményezni. Az országos szintű jelentős vízgazdálkodási problémák dokumentum dokumentum vitaanyagára külön írásbeli észrevétel nem érkezett.

A jelentős vízgazdálkodási problémák vitaanyagainak írásbeli véleményezése mellett 2015. július 29-én Jelentős Vízgazdálkodási Problémák (JVP) és szerepük a Vízgyűjtő-gazdálkodási Terv felülvizsgálata során címmel fórum került megrendezésre, ahol az Országos JVP-ről szóban is lehetett észrevételeket megfogalmazni. A fórumon elhangzott szóbeli észrevételek és szakértői válaszok az OVGT 10-3 mellékletben találhatók.

Minden beérkezett vélemény összesítésével a Duna részvízgyűjtőre 327 db. észrevétel érkezett, az összes észrevétel 36%-a.

Megjegyezzük, hogy a 327 véleményből 259 került besorolásra, a százalékos eloszlás a besorolatokra vonatkozik.

Az besorolt válaszok alapján látható, hogy a legnagyobb részben (36%) vélemény elfogadása és teljes egészében tervbe való beépítése történt meg, illetve meg fog történni. Második legjelentősebb vélemény szám (a vélemények mintegy harmada, 31%) viszont a terv szempontjából nem volt releváns.

III. szakasz: A felülvizsgált vízgyűjtő-gazdálkodási terv(ek) tervezetének nyilvánosságra hozatala és társadalmi vitája

Információ átadás

A társadalom-bevonás első szintjét, az információ átadását a tervezés mindenki által elérhető honlapja, a www.vizeink.hu jelentette.

A honlapon elérhetőek és letölthetőek az Országos és a Részvízgyűjtő tervek, az SKV, az írásban érkezett vélemények és a Fórumok meghívói, plakátjai és előadásai.
A széles nyilvánosság folyamatos tájékoztatását biztosította az írott és elektronikus médian keresztül folyatott információs kampány, sajtómegjelenések melyek részben a Fórumokhoz kapcsolódtak, részben pedig az önkormányzatokon keresztül, azok megszólásával biztosította a nyilvánosságot.

2015-ben szeptember folyamán egy országos sajtótájékoztató mutatta be a projekt eredményeit.

Konsultáció

A dokumentumokra vonatkozóan az írásbeli észrevételezés lehetősége a közöltelé időpontjától kezdve folyamatos, melyeket a vgt2@vizeink.hu címre lehet megtenni. A jelen dokumentumban a szeptember 8-ig beérkezett írásbeli észrevételek kerültek figyelembevételre, de az észrevételezés lehetősége továbbra is fennáll. Az írásbeli észrevételek felkerültek a www.vizeink.hu honlapra.

A szeptember 8-ig beérkezett észrevételek a végleges tervben kerülnek majd figyelembevételre.

Fórumok megrendezése

A meghívók kiküldésére egy-két héttel a rendezvények előtt, speciális címlisták alapján került sor.

A területi fórumok listájának összeállításában a Vízügyi Igazgatóságok címlistái szolgáltak alapul. Ezáltal mindig az adott terület érdekelt szervezeti, intézményei kerültek megkeresésre, úgy, mint: helyi önkormányzatok, kormányhivatalok, katasztrófavédelmi igazgatóságok, járási hivatalok, környezetvédelmi szervezetek, területi vízgazdálkodási tanácsok, társadalmi szervezetek, szakmai-tudományos szervezetek, nemzeti parkok, civil szervezetek és minden egyéb érintett szervezet, akiket adott témával kapcsolatban a Vízügyi Igazgatóságok szükségesnek tartottak bevonni.

A projekt keretében 43 fórum megrendezésére került sor 2015. június 1. és 2015. szeptember 4. között. Az alábbi fórumtípusok megrendezésére került sor:

- Országos Szakmai Fórumok (9). Szakterületek kiemelt kérdései, szakmai egyeztetések.
- Területi Speciális Fórumok (8). Földrejzilag lehatárolható és különös figyelmet érintő területek.
Területi Vízgyűjtő-gazdálkodási Fórumok (VIZIG területén a VGT feladatok 12 db.)
Részvízgyűjtő fórumok (4 részvízgyűjtőre, Duna, Tisza, Dráva, Balaton)
Tematikus országos fórumok (8). A VGT legfontosabb vízhasználó csoportokat, hajtóerőket érintő eredményei, intézkedései (mezőgazdaság, erdőgazdaság, halászat, ipar, közlekedés, települések, energiaipar, természetvédelem, zöld szervezetek,
Egyéb fórumok (a Stratégiai Környezeti Vizsgálattal és a Jelentős Vízgazdálkodási Problémákkal kapcsolatos Fórumok).

A megvalósult fórumokat a 10-1. táblázat tartalmazza.

10-1. táblázat: Fórumok áttekintése

<table>
<thead>
<tr>
<th>Fórum típusa</th>
<th>Fórum címe</th>
<th>Időpont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Országos szakmai</td>
<td>Felszín alatti vizek a 2. Vízgyűjtő-gazdálkodási Tervben</td>
<td>2015.06.10.</td>
</tr>
<tr>
<td>Országos szakmai</td>
<td>A VGT tervek és az árvízi kockázat kezelési tervek összehangolása</td>
<td>2015.06.17.</td>
</tr>
<tr>
<td>Országos szakmai</td>
<td>Monitoring feladatok a 2. vízgyűjtő-gazdálkodási tervben</td>
<td>2015.06.17.</td>
</tr>
<tr>
<td>Országos szakmai</td>
<td>Területi vízgazdálkodás, mezőgazdasági vízszolgáltatás</td>
<td>2015.06.18.</td>
</tr>
<tr>
<td>Országos szakmai</td>
<td>Települési vízgazdálkodás, víziközmű, csapadékvíz-gazdálkodás</td>
<td>2015.06.18.</td>
</tr>
<tr>
<td>Országos szakmai</td>
<td>A vízgyűjtő-gazdálkodásra vonatkozó EU irányelvek és intézkedései tervek érvényesítése a gyakorlati tervezési feladatokban (MHT Országos Fórum)</td>
<td>2015.07.01.</td>
</tr>
<tr>
<td>Országos szakmai</td>
<td>Hidromorfológiai kérdések a Duna – Dráva - Balaton részvízgyűjtő területén</td>
<td>2015.07.08.</td>
</tr>
<tr>
<td>Országos szakmai</td>
<td>Hidromorfológiai kérdések a Tisza részvízgyűjtő területén</td>
<td>2015.07.09.</td>
</tr>
<tr>
<td>Speciális területi</td>
<td>Hosszirányú átjárhatóság biztosítása hallépcső építésével</td>
<td>2015.07.15.</td>
</tr>
<tr>
<td>Speciális területi</td>
<td>A Ráckevei-Soroksári Duna-ág vízgazdálkodása</td>
<td>2015.07.16.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-NYUDUVIZIG</td>
<td>2015.07.20.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-ADUVIZIG</td>
<td>2015.07.21.</td>
</tr>
<tr>
<td>Speciális területi</td>
<td>A Nyírség vízháztartása</td>
<td>2015.07.22.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-TIVIZIG</td>
<td>2015.07.27.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-FETIVIZIG</td>
<td>2015.07.28.</td>
</tr>
<tr>
<td>Országos</td>
<td>Jelentős Vízgazdálkodási Problémák (JVP) és szerepük a Vízgyűjtő-gazdálkodási Terv felülvizsgálata során</td>
<td>2015.07.29.</td>
</tr>
<tr>
<td>Országos</td>
<td>A második Országos Vízgyűjtő-gazdálkodási Terv Stratégiai Környezeti Vizsgálata</td>
<td>2015.07.29.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-KÖTIVIZIG</td>
<td>2015.08.03.</td>
</tr>
</tbody>
</table>
Vízgyűjtő-gazdálkodási Terv - 2015

Balaton részvízgyűjtő

<table>
<thead>
<tr>
<th>Fórum típusa</th>
<th>Fórum címe</th>
<th>Időpont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Területi VGT</td>
<td>VGT-KÖVIZIG</td>
<td>2015.08.04.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-ADTIVIZIG</td>
<td>2015.08.05.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-ÉMVIZIG</td>
<td>2015.08.10.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-KDVIZIG</td>
<td>2015.08.11.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-KDTVIZIG</td>
<td>2015.08.12.</td>
</tr>
<tr>
<td>Speciális területi</td>
<td>A Vízgyűjtő-gazdálkodási terv felülvizsgálata a Rába alsó szakasz és a Hanság térségében</td>
<td>2015.08.18.</td>
</tr>
<tr>
<td>Speciális területi</td>
<td>A Tisza-tó vízgazdálkodásának jelene és jövője</td>
<td>2015.08.19.</td>
</tr>
<tr>
<td>Részvízgyűjtő</td>
<td>A Tisza részvízgyűjtő-gazdálkodási terv felülvizsgálata</td>
<td>2015.08.24.</td>
</tr>
<tr>
<td>Részvízgyűjtő</td>
<td>A Dráva részvízgyűjtő-gazdálkodási terv felülvizsgálata</td>
<td>2015.08.25.</td>
</tr>
<tr>
<td>Területi VGT</td>
<td>VGT-ÉDUVIZIG</td>
<td>2015.08.26.</td>
</tr>
<tr>
<td>Speciális területi</td>
<td>A Duna-Tisza közi Homokhátság vízgazdálkodási kérdései</td>
<td>2015.08.27.</td>
</tr>
<tr>
<td>Részvízgyűjtő</td>
<td>A Duna részvízgyűjtő-gazdálkodási terv felülvizsgálata</td>
<td>2015.08.28.</td>
</tr>
<tr>
<td>Speciális területi</td>
<td>A Dunántúli-középhegység karsztvíz készletének mennyiségi, minőségi állapota</td>
<td>2015.08.31</td>
</tr>
<tr>
<td>Részvízgyűjtő</td>
<td>A Balaton részvízgyűjtő-gazdálkodási terv felülvizsgálata</td>
<td>2015.08.31</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A vízgyűjtő-gazdálkodási tervezés eredményei, az intézkedések programja (Zöld fórum)</td>
<td>2015.09.01</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A vízgyűjtő-gazdálkodási tervezés természettvédelmet, védett területeket érintő eredményei, az intézkedések programja</td>
<td>2015.09.01</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A vízgyűjtő-gazdálkodási tervezés mezőgazdasággal, erdészettel, halgazdálkodással kapcsolatos eredményei, az intézkedések programja - Vízminőség-védelem, terheléscsökkentés</td>
<td>2015.09.02</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A vízgyűjtő-gazdálkodási tervezés mezőgazdasággal, erdészettel, halgazdálkodással kapcsolatos eredményei, az intézkedések programja - Vizek mennyiség védelme, vízhasznosítás, belvízgazdálkodás</td>
<td>2015.09.02</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A vízgyűjtő-gazdálkodási tervezés települési vízgazdálkodással kapcsolatos eredményei, az intézkedések programja</td>
<td>2015.09.03</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A vízgyűjtő-gazdálkodási tervezés ipart, közlekedést érintő eredményei, az intézkedések programja</td>
<td>2015.09.03</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A vízgyűjtő-gazdálkodási tervezés energiaipart érintő eredményei, az intézkedések programja</td>
<td>2015.09.04</td>
</tr>
<tr>
<td>Tematikus Országos</td>
<td>A VKI szerinti mentességek alkalmazása</td>
<td>2015.09.04</td>
</tr>
</tbody>
</table>
10.3A társadalom bevonásának hatása a terv tartalmára

A folyamat felépíteése (területi és tematikus, országos fórumok sora, írásbeli és szavazatok, intézkedések összefüggéseit a társadalmi bevonás folyamatába bekapcsolódók megismerjék és megvitatják. A jó állapot elérését célzó különböző intézkedések, megoldások számos variációját megvitatták az érdekeltek. Az I. vitaanyagra érkezett vélemények jelentős részét a tervezők figyelembe vették a tervezés során, amit a II. vitaanyag igazol. A konzultációs folyamatban szóban, vagy írásban érkezett véleményeket, elemi és szavazatokat, témakörökre bontva a tervezők feldolgozták, írásban megválaszolták és dokumentálták. Lényeges része volt az írásbeli és szavazatok esetében válasznak annak megjelölése, hogy a vélemény milyen módon kerül elfogadásra

Szeptember 8-ig beérkezett részvízgyűjtő tervekre beérkezett írásos és szavazatok a szakértői válaszokat a 10-2 melléklet tartalmazza.

A fórumon elhangzott észrevételeket és szavazatokat a 10-3 melléklet tartalmazza.

A projekt honlapján véleményezési felület áll rendelkezésre továbbra is a tervek írásbeli véleményezésére.

A közzétett dokumentumokról az elektronikus konzultáció lehetővé teszi, hogy az érintettek az internet segítségével közvetlenül véleményt nyilváníthatson a közzétett tervdokumentumokról. A véleményt elektronikus úton a vgt2@vizeink.hu e-mail címre lehet megküldeni.

A közzétett dokumentumokról postai úton eljuttatott levélben is véleményt lehet formálni az ÖKO Zrt. 1253. Budapest, Pf. 7. címre eljuttatott levéllel.

10.4 A Vízgazdálkodási Tanácsok szerepe és feladatai a VGT véleményezési folyamatban

A Területi Vízgazdálkodási Tanácsok (TVT) elősegíti a területi szintű vízgazdálkodás szakmai feladatainak egységes végrehajtását, valamint a vízügyi tervezés, a vízépítés és a szolgáltató tevékenység összehangolt működését. A TVT a vízgyűjtő-gazdálkodási tervezés során a társadalmi részvétel biztosítása érdekében Vízgyűjtő-gazdálkodási Tervezési Bizottságot valamint Szakmai Bizottságokat hozott létre. Minden TVT egy főt delegál a Részvízgyűjtő Vízgazdálkodási Tanácsba.
A VGT1 végrehajtásának folyamatában 2010-2015 között is fontos szerepet játszottak a területi vízgazdálkodási tanácsok. A vízgyűjtőterületen zajló, a vizek hasznosítását és védelmét szolgáló projektekkel kapcsolatban a tanácsok rendszeresen beszámoltatták a projekt kedvezményezetteket, illetve a szakmai bizottságaikat, így például az Ivóvízminőség-javító programról, a szennyvíz-elvezetési agglomerációs csatlakozási kérelmekkel kapcsolatos állásfoglalásukról.

A tanácsok működése nagymértékben hozzájárult ahhoz is, hogy a társadalom és a nyilvánosság mind szélesebb körben értesüljön a vízgazdálkodással kapcsolatos, helyi jellegű kérdésekről, problémákról, tervekről, valamint közvetlenül részt vegyen az ezzel kapcsolatos döntési folyamatok előkészítésében.

2015. 06. 22-én, az Országos Vízgazdálkodási Tanács ülésén foglalkozott a VGT kérdéseivel. Megtárgyalták az Országos Jelentős Vízgazdálkodási Problémák dokumentumát, a VGT2 vitaanyagot, valamint a vízhasználatok gazdasági elemzéséről szóló jelentést.

A TVT-k, az RVT jegyzőkönyvei a 10-4 mellékletben találhatóak.

A vízgazdálkodási tanácsok október, november folyamán megvitatták a VGT2 vitaanyagot és a tervek véglegesítésére a három szintű tanácsok (TVT albizottság, RVT, OVT) állásfoglalását, az SKV véglegesítését követően, az üléseken megfogalmazottakból fakadó, esetlegesen még szükséges módosítások elvégzése után kerül sor.